Towards interaction-based user embeddings in sequential recommender models MARINA ANANYEVA, Tinkoff, Russia and National Research University Higher School of Economics, Russia OLEG LASHININ, Tinkoff, Russia VERONIKA IVANOVA, National Research University Higher School of Economics, Russia SERGEY KOLESNIKOV, Tinkoff, Russia DMITRY IGNATOV, National Research University Higher School of Economics, Russia All transductive recommender systems are unable to make predictions for users who were not included in the training sample due to the process of learning user-specific embeddings. In this paper, we propose a new method for replacing identity-based user embeddings in existing sequential models with interaction-based user vectors trained purely on interaction sequences. Such vectors are composed of user interactions using GRU layers with adjusted dropout and maximum item sequence length. This approach is substantially more efficient and does not require retraining when new users appear. Extensive experiments on three open-source datasets demonstrate noticeable improvement in quality metrics for the most of selected state-of-the-art sequential recommender models. CCS Concepts: • Information systems → Recommender systems; Spatial-temporal systems; Personalization. Additional Key Words and Phrases: sequential recommendation, user-specific embeddings, inductive learning #### **ACM Reference Format:** ### 1 INTRODUCTION Recommender systems are widely used in various online services, such as social networks, e-commerce and entertainment platforms. These services gather large amounts of sequential data, including the history of interactions between users and items. Some sequential models require learning the ID-based latent user vectors, which are supposed to represent both short-term and long-term preferences based on user-specific information and previous history of interactions. However, there are several drawbacks to this approach. Firstly, transductive models can recommend items only to users from the training set. The predictions cannot be obtained only based on previous interactions of out-of-sample users because the model's trained user embeddings depend on users' IDs and additional features (if provided). The problem of making recommendations for new users is solved either by fully retraining the model on the updated data or iterative training on new batches [43]. For industrial purposes, the retraining process on large-scale data is time- and space-consuming, constantly affecting the user coverage with recommendations and the quality of service for new users. Secondly, storing trainable user vectors may allocate a lot of memory, since the amount of occupied space is usually O(n), where n is the number of users. It results in issues associated with model exploitation and storage for a large number of users, which are prevalent in the development of online services. Without the use of user-specific vectors, Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. © 2022 Association for Computing Machinery. Manuscript submitted to ACM 1 Table 1. Full and short papers on sequential recommender models per conference series from 2019 to 2021. | Conference | Articles | Number of models with user vectors | Explained motivation for using user vectors | |------------|---------------------------------|------------------------------------|------------------------------------------------------| | RecSys'21 | [29] | 0/1 (0%) | - | | RecSys'20 | [4, 10, 19, 20, 25, 37] | 2/6 (33%) [10, 37] | Long-term preferences, model personalization | | RecSys'19 | [44] | 0/1 (0%) | - | | CIKM'21 [| 3, 5, 8, 9, 11, 13, 16, 17, 38] | 3/9 (33%) [3, 9, 17] | Long-term preferences (2 works), friends' impact | | CIKM'20 | [2, 14, 32, 46] | 1/4 (25%) [14] | Short&long-term preferences | | CIKM'19 | [22, 31, 39, 40] | 3/4 (75%) [22, 39, 40] | Short&long-term preferences | | SIGIR'21 | [1, 7, 21, 42] | 0/4 (0%) | - | | SIGIR'20 | [28, 35, 45] | 1/3 (33%) [35] | For ranking score in BPR and GMF | | SIGIR'19 | [24, 27] | 2/2 (100%) [24, 27] | Lifelong user behavior, user-specifc representations | we don't occupy memory for storing a look-up ID-dependent user embedding matrix, reducing space complexity to O(1) by on-the-fly inference of user embedding by the input interactions, which greatly simplifies the operating process. In this research, we present a method for constructing real-time produced user vectors that is capable of overcoming the limitations mentioned above. The contributions of this work are summarized as follows: - We proposed a method of composing user embedding based purely on interaction sequences, which can be employed in architectures of existing recommender sequential models instead of ID-based user-specific embeddings. This approach helps to avoid the need to retrain recommendation models as new interactions emerge. In addition, it does not require storage of per-user embeddings, and is therefore more storage efficient and scalable. - We have comprehensively reviewed existing work in three A and B-ranked conference series (RecSys, CIKM and SIGIR) in 2019-2021 that use identity-based user embeddings in architectures. This shows that a third of existing models can be improved using our approach. The experiments can be reproduced using our open-source repository¹. ### 2 RELATED WORK Sequence-based recommender models are commonly used for recommendation tasks on serial data. Most of them are based on recurrent neural networks (RNNs), for instance, GRU4Rec [12], SASRec [15], SHAN [41]. Additionally, Transformers4Rec [6] is gaining popularity in usage for sequential and session-based tasks. Some architectures attempt to model temporal decay effects in user interactions history in order to improve the relevance of recommendations. Customer needs as well as both short-term and long-term preferences change over time, which should be taken into account in the predictions. Intuitively, the most recent interactions should have greater weight than older ones in deciding on the next item. Additionally, users may require substitutions or supplements for an already acquired item. These assumptions have been incorporated into the design of the SLRC [34], Chorus [36] and KDA [33] models. The approaches mentioned above have serious limitations for industrial application: item recommendations are made based on user-specific embeddings, which can be trained only for users that were included in the training set. In contrast, inductive learning models can provide recommendations for out-of-sample users, who have interactions but are not included in the training process. For instance, Mult-VAE [18] and LightGCN, modified for inductive learning ¹https://github.com/tinkoff-ai/use_rs mode, [26] can provide predictions for users outside of the training sample. Nevertheless, the quality of inductive models is often lower than that of transductive ones. Thus, one of the open challenges for transductive models which show high performance is to overcome the problem of making predictions for out-of-sample users. Additionally, the effect of user-specific embeddings on the quality of recommendations is not yet sufficiently studied. In this research, we propose researching whether we really need user-specific embeddings or if it is better to train ID- and feature-free user vectors based solely on previous item interactions. ### 3 METHODOLOGY ## 3.1 Rationale for Using User-specific Vectors To determine how frequently trainable user-specific vectors are used in existing sequential recommender models and to systematise the reasons for their use, we examined the proceedings of scientific conferences with relevant articles. The summary in **Table 1** shows that our analysis research includes articles that were presented between 2019 and 2021 in three conference series: RecSys, CIKM, and SIGIR. A paper was considered relevant if it proposed a sequential recommendation model, including session-based and POI recommendation tasks, and if their performance was compared to sequential recommender model baselines. As a result, we compiled a list of 34 relevant studies, 12 of which containing applications of user embeddings. According to the authors, the primary purpose for including user vector processing in the proposed methods, which appeared in five studies, was to represent long-term preferences. Other objectives included modeling both short-term and long-term preferences, learning user-specific vectors from mixed representations of all users sharing the same account, and modeling the impact of friends' behavior. ## 3.2 Initialization of User Vectors Each sequential model processes the history of users' interactions in order to represent relationships between interactions and then model the user's behavioral patterns [12] [15]. In our work, we investigate the feasibility of employing this method to obtain vector representations that reflect users' interests, as well as how it influences the quality of sequential models. All of the selected models transform the user ID into a low-dimensional real-valued dense vector representation $\mathbf{u} \in \mathbb{R}^d$, where d is the dimension of the user embedding. The embedding is then processed in accordance with the architecture of each model. Instead of using this technique, we propose to replace the ID-based user embedding initialization with interaction-based user embedding initialization, suggesting that the user ID be discarded as limiting information for efficiency and scalability. Let $\mathbf{S}\mathbf{u}$ be the input representations of previous interactions, $\mathbf{S}\mathbf{u} \in \mathbb{R}^{L \times d}$, where L is the maximum history length. First, we apply a Dropout layer [30] to the matrix $\mathbf{S}\mathbf{u}$. The sequence representation is then processed by GRU layers. Note that our goal is to show that our approach is effective even with a simple recurrent layer like GRU. The use of more advanced layers is left for future improvements. The final step is to use a linear layer to reduce the embedding dimension to its initial size d. As a result, we obtain a user embedding $\mathbf{u} \in \mathbb{R}^d$ as the output of successively applied layers: Dropout layer, two GRU layers, and Dense layer, the input of which is a sequence of each user's historical data. This approach has several significant advantages. First, the space complexity is optimized from O(n) to O(1), where n is the number of users. There is no need to store pre-computed embeddings in a look-up matrix with users' IDs as each vector can be derived on the fly from the input interaction sequence using the learned neural network weights. It addresses the scalability issues for commercial applications. Secondly, it can be regarded as a step toward users' privacy 3 and confidentiality, because a user identifier is redundant information, and without using it we can not map it back to personal data. Lastly, our approach allows adapting previously introduced sequential recommender models to inductive learning scenarios, when we can infer the recommendations for the users, who were not included in a training sample. ### 3.3 Models In our experiments, we decided to use one of the most popular frameworks for sequential recommendation models - ReChorus² and RecBole³. For the experimental setup, we have selected state-of-the-art models that have proven themselves in many new research papers as reliable baselines for comparison with new models. Thus, we selected three models from the ReChorus framework - KDA, Chorus, and SLRC - and two models from RecBole - SHAN and HGN - in order to study how different user vector initialization techniques affect model performance on three open-source datasets. Two RecBole models have been implemented in ReChorus to ensure a fair comparison of the models. - Sequential Hierarchical Attention Network (SHAN) [41] is a two-layer hierarchical attention network. The attention mechanism is needed to assign altered weights of items for the user to capture the dynamic property, while the hierarchical structure integrates the user's long- and short-term preferences. User embedding vector is used as context information to obtain various weights for different users. - Hierarchical Gating Network (HGN) [23] consists of three parts: feature gating, instance gating, and an item-item product modules. The feature gating module allows adaptive selection of effective latent features based on user interests. At the instance gating module, items that reflect short-term user preferences are selected and passed down to lower layers along with item features. User embedding is used in both feature gating and instance gating modules. - Chorus [36] incorporates the representation of different sequence contexts by knowledge and time-aware item modeling. The constructed temporal kernel functions modify the temporal dynamics of relations by representing two sorts of items substitutes and complements and allowing relational representations to contribute differentially to the final item embedding. User embeddings are used in both the BPR and GMF approaches for making predictions. - Short-Term and Life-Time Repeat Consumption (SLRC) [34] model uses the Hawkes Process and Collaborative Filtering, which requires learning user embeddings to distinguish between user interests and help explore new items. Considering the lack of recurrent interactions in the Amazon and MovieLens datasets, we use this model to derive substitutive and complementary types of relations between items, as implemented in the SLRS model in Chorus. - Knowledge-aware Dynamic Attention (KDA) [33] takes both item relations and their temporal evolution into account. The core idea of KDA is to aggregate the sequence of interactions into multiple relation-specific embeddings via an attention mechanism. Fourier transform with trainable frequency domain embeddings was used in a novel way to simulate the diverse temporal effects of various relational interactions. User vectors, as well as item vectors and interaction representations, are used in the final ranking score. Overall, we selected all models stated above and compared the original architectures with the architectures without user-specific vectors, based on our approach of learning only from interaction sequences. ²https://github.com/THUwangcy/ReChorus ³https://recbole.io/ Table 2. Descriptive statistics of datasets. | Dataset | #users | #items | #actions | #density | | |-----------------|---------|--------|----------|----------|--| | MovieLens-1M | 6,040 | 3,416 | 1M | 4.84% | | | Grocery&Gourmet | 127,496 | 41,280 | 1,1M | 0.022% | | | Electronics | 192,403 | 63,001 | 1,7M | 0.014% | | Table 3. The results of pairwise comparison of original and modified models. The best method in the pair is in bold. | Dataset | Metric | SHAN | HGN | SLRC | Chorus | KDA | SHANour | · HGN _{our} | $SLRC_{our}$ | Chorusour | KDA_{our} | |-----------------|---------|--------|--------|--------|--------|--------|---------|----------------------|--------------|-----------|-------------| | MovieLens-1M | NDCG@10 | 0.3137 | 0.5233 | 0.3226 | 0.4309 | 0.6041 | 0.3209 | 0.5812 | 0.5822 | 0.5976 | 0.6011 | | | HR@10 | 0.5661 | 0.7846 | 0.5778 | 0.7161 | 0.8386 | 0.5700 | 0.8086 | 0.8091 | 0.8258 | 0.8257 | | Grocery&Gourmet | NDCG@10 | 0.2480 | 0.3898 | 0.3334 | 0.4046 | 0.4442 | 0.2565 | 0.3268 | 0.3673 | 0.4089 | 0.4456 | | | HR@10 | 0.4067 | 0.5670 | 0.4982 | 0.5862 | 0.6279 | 0.4306 | 0.4989 | 0.5376 | 0.5958 | 0.6291 | | Electronics | NDCG@10 | 0.2887 | 0.3845 | 0.3914 | 0.4063 | 0.4605 | 0.3137 | 0.3662 | 0.4171 | 0.4523 | 0.4544 | | | HR@10 | 0.4418 | 0.5875 | 0.5569 | 0.5994 | 0.6733 | 0.495 | 0.5666 | 0.6040 | 0.6527 | 0.6685 | Fig. 1. Relative change in NDCG@10 of five models on MovieLens-1M, Amazon Grocery&Gourmet Food, and Amazon Electronics Datasets. # 4 EXPERIMENTS In this section, we introduce our experimental setup and compare the performance of original models with modified ones. Our experiments are designed to answer the following research questions: RQ1: Does the proposed method have a positive effect on the quality of existing sequential recommender models? RQ2: How does the maximum sequence length affect the models' performance? ## 4.1 Datasets We chose the three datasets most commonly used for sequential recommendation: *MovieLens-1M*⁴, *Amazon-Grocery and Gourmet Food* and *Amazon-Electronics*⁵. These open-source datasets have different domains, sizes, and sparsity. They contain user interaction sequences with timestamps and item metadata, including the list of *also view* and *also buy* relations in Amazon datasets and the list of genres in MovieLens data set. We use a common leave-one-out strategy with 99 negative items, similar to [33]. For SHAN, HGN, and SLRC, we only need user interaction sequences, while Chorus and KDA are based on knowledge graphs, so we use metadata to build them. In Amazon datasets, we simply use the relations of *also view* and *also buy*, provided in the metadata data set, as was done in [36]. We chose the most ⁴https://grouplens.org/datasets/movielens/1m/ $^{^5} http://jmcauley.ucsd.edu/data/amazon/\\$ popular movies of the same genre as the equivalent of *also view* items for the MovieLens data set, and the most popular items in the set of movies that user has watched right after the ground-truth item as the equivalent of *also buy* items. ### 4.2 Evaluation Metrics Hit Ratio (HR@k) and Normalized Discounted Cumulative Gain (NDCG@k) were used as evaluation metrics, where k = [5, 10, 20, 50]. HR@k measures whether at least one ground-truth item appears in the top-k recommendation list, whereas NDCG@k considers both the position and relevance of the item in the recommendation list. The values of NDCG@10 and HR@10 for 5 original and 5 modified models are presented in **Table 3**. ## 4.3 Experiment Settings All models were implemented using the PyTorch framework. For a fair comparison, we set the embedding size to 64, batch size to 256 and the maximum history length to 20 for all models and datasets, similar to experiments in [36]. Additionally, we demonstrate the results of experiments for other values of the maximum history length: 10, 30, and 50. Other hyperparameters are dependent on the model and are set to their default values the same as in the original implementations. ## 4.4 Performance Comparison As can be seen, Table 3 shows the recommendation performance of original architectures and modified models on three datasets (RQ1). The proposed strategy has a significant impact on model quality across all datasets. For instance, on MovieLens-1M we can see increases in both NDCG@10 and HR@10 for 4 modified models, compared to the original ones: SHANour, HGNour, SLRCour and Chorusour, while for KDAour quality remains nearly the same. The quaity improvement varies widely, ranging from 1% for SHANour to 81% for SLRCour. We even observe a slight boost in evaluation metrics for the strongest baseline, KDA, on Amazon Grocery&Gourmet Food. However, the quality of HGNour has deteriorated: NDCG@10 has decreased by 16%. On Amazon Electronics we can see decreasing of metric values by 1% for KDA_{our} and by 5% for HGN_{our} , while for $SLRC_{our}$, $SHAN_{our}$ and $Chorus_{our}$ the quality improved in range of 7% to 12%. The overall performance of four models improved dramatically, but changing user-specific vectors had almost no influence on the KDA_{our} model. According to a research article with KDA, one possible explanation is that the architecture of KDA [33] is not highly sensitive to the presence of user vectors at all. SLRCour demonstrates significant improvement in quality for all datasets. It is explained by the fact that the SLRC algorithm's core component is collaborative filtering (CF), which is good for modeling long-term user preferences. Our technique allows us to evaluate short-term preferences in CF, which the original model may have overlooked. If we consider each of the model-dataset pairs as a separate experiment, our approach dramatically increases the quality metrics in 11 out of 15 cases. Summing up, comparative experiments on three real-world datasets show the effectiveness of our approach and significant improvement of quality for the majority of examined models. A new method with replaced user-specific embeddings provides a significant relative gain in performance (e.g., 0.6% - 12.1% for SHAN [41], 1.1% - 38.7% for Chorus[36], 6.6% - 80% for SLRC[34]). Figure 1 shows how the maximum history length influences quality improvement when our approach is applied (**RQ2**). The smaller the maximum sequence length, the better the model captures user short-term preferences, while long-term effects outweigh short-term effects for larger lengths. When the length of the sequence shrinks, the long-term influence of modeling, which is the primary reason for using user embeddings in a model, disappears. As a result, replacing user-specific vectors works effectively for both short (l = 10) and long (l = 50) sequences. #### 5 CONCLUSION In this research, we proposed a method of composing vectors based purely on interaction sequences, which can be employed in architectures of existing recommender sequential models instead of user-specific embeddings. Our method has several advantages over user-specific vectors in that it does not require constant retraining of the model as the number of users increases, and it is more memory-efficient. Extensive experiments on three real-world datasets reveal that the majority of evaluated models were improved in quality. Additionally, we studied the relationship between the model's relative improvement and item sequence length when our method is applied. Thus, we suggest researchers to experiment with our approach in their studies over using ID-based user-specific embeddings. Our results can open up a new research area for ablation studies on the use of user-specific embeddings in recommender systems. In the future, we are going to apply our approach to more modern models and try other techniques to get custom vectors from interactions using more complex architectures than GRU. In addition, it is essential to investigate how high-quality and stable this approach is with an extremely small number of user interactions. ## REFERENCES - [1] Renqin Cai, Jibang Wu, Aidan San, Chong Wang, and Hongning Wang. Category-aware collaborative sequential recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 388–397, 2021. - [2] Wanyu Chen, Pengjie Ren, Fei Cai, Fei Sun, and Maarten de Rijke. Improving end-to-end sequential recommendations with intent-aware diversification. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pages 175–184, 2020. - [3] Zeyuan Chen, Wei Zhang, Junchi Yan, Gang Wang, and Jianyong Wang. Learning dual dynamic representations on time-sliced user-item interaction graphs for sequential recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 231–240, 2021. - [4] Sung Min Cho, Eunhyeok Park, and Sungjoo Yoo. Meantime: Mixture of attention mechanisms with multi-temporal embeddings for sequential recommendation. In Fourteenth ACM Conference on Recommender Systems, pages 515–520, 2020. - [5] Qiang Cui, Chenrui Zhang, Yafeng Zhang, Jinpeng Wang, and Mingchen Cai. St-pil: Spatial-temporal periodic interest learning for next point-of-interest recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 2960–2964, 2021 - [6] Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and Even Oldridge. Transformers4rec: Bridging the gap between nlp and sequential/session-based recommendation. In Fifteenth ACM Conference on Recommender Systems, pages 143–153, 2021. - [7] Xinyan Fan, Zheng Liu, Jianxun Lian, Wayne Xin Zhao, Xing Xie, and Ji-Rong Wen. Lighter and better: low-rank decomposed self-attention networks for next-item recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1733–1737, 2021. - [8] Ziwei Fan, Zhiwei Liu, Shen Wang, Lei Zheng, and Philip S Yu. Modeling sequences as distributions with uncertainty for sequential recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 3019–3023, 2021. - [9] Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, and Philip S Yu. Continuous-time sequential recommendation with temporal graph collaborative transformer. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 433–442, 2021. - [10] Casper Hansen, Christian Hansen, Lucas Maystre, Rishabh Mehrotra, Brian Brost, Federico Tomasi, and Mounia Lalmas. Contextual and sequential user embeddings for large-scale music recommendation. In Fourteenth ACM Conference on Recommender Systems, pages 53–62, 2020. - [11] Zhankui He, Handong Zhao, Zhe Lin, Zhaowen Wang, Ajinkya Kale, and Julian Mcauley. Locker: Locally constrained self-attentive sequential recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 3088–3092, 2021. - [12] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015. - [13] Kaixi Hu, Lin Li, Qing Xie, Jianquan Liu, and Xiaohui Tao. What is next when sequential prediction meets implicitly hard interaction? In *Proceedings* of the 30th ACM International Conference on Information & Knowledge Management, pages 710–719, 2021. - [14] Wendi Ji, Keqiang Wang, Xiaoling Wang, Tingwei Chen, and Alexandra Cristea. Sequential recommender via time-aware attentive memory network. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pages 565-574, 2020. - [15] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE International Conference on Data Mining (ICDM), pages 197–206. IEEE, 2018. - [16] Yang Li, Tong Chen, Peng-Fei Zhang, and Hongzhi Yin. Lightweight self-attentive sequential recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 967–977, 2021. - [17] Yunzhe Li, Yue Ding, Bo Chen, Xin Xin, Yule Wang, Yuxiang Shi, Ruiming Tang, and Dong Wang. Extracting attentive social temporal excitation for sequential recommendation. arXiv preprint arXiv:2109.13539, 2021. - [18] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. Variational autoencoders for collaborative filtering. In *Proceedings of the* 2018 world wide web conference, pages 689–698, 2018. - [19] Jing Lin, Weike Pan, and Zhong Ming. Fissa: fusing item similarity models with self-attention networks for sequential recommendation. In Fourteenth ACM Conference on Recommender Systems, pages 130–139, 2020. - [20] Siyi Liu and Yujia Zheng. Long-tail session-based recommendation. In Fourteenth ACM conference on recommender systems, pages 509-514, 2020. - [21] Zhiwei Liu, Ziwei Fan, Yu Wang, and Philip S Yu. Augmenting sequential recommendation with pseudo-prior items via reversely pre-training transformer. In Proceedings of the 44th international ACM SIGIR conference on Research and development in information retrieval, pages 1608–1612, 2021 - [22] Fuyu Lv, Taiwei Jin, Changlong Yu, Fei Sun, Quan Lin, Keping Yang, and Wilfred Ng. Sdm: Sequential deep matching model for online large-scale recommender system. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pages 2635–2643, 2019. - [23] Chen Ma, Peng Kang, and Xue Liu. Hierarchical gating networks for sequential recommendation. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages 825–833, 2019. - [24] Muyang Ma, Pengjie Ren, Yujie Lin, Zhumin Chen, Jun Ma, and Maarten de Rijke. π-net: A parallel information-sharing network for shared-account cross-domain sequential recommendations. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 685–694, 2019. - [25] Fei Mi, Xiaoyu Lin, and Boi Faltings. Ader: Adaptively distilled exemplar replay towards continual learning for session-based recommendation. In Fourteenth ACM Conference on Recommender Systems, pages 408–413, 2020. - [26] Rahul Ragesh, Sundararajan Sellamanickam, Vijay Lingam, Arun Iyer, and Ramakrishna Bairi. User embedding based neighborhood aggregation method for inductive recommendation. arXiv preprint arXiv:2102.07575, 2021. - [27] Kan Ren, Jiarui Qin, Yuchen Fang, Weinan Zhang, Lei Zheng, Weijie Bian, Guorui Zhou, Jian Xu, Yong Yu, Xiaoqiang Zhu, et al. Lifelong sequential modeling with personalized memorization for user response prediction. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 565–574, 2019. - [28] Ruiyang Ren, Zhaoyang Liu, Yaliang Li, Wayne Xin Zhao, Hui Wang, Bolin Ding, and Ji-Rong Wen. Sequential recommendation with self-attentive multi-adversarial network. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 89–98, 2020. - [29] Wenzhuo Song, Shoujin Wang, Yan Wang, and Shengsheng Wang. Next-item recommendations in short sessions. In Fifteenth ACM Conference on Recommender Systems, pages 282–291, 2021. - [30] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958, 2014. - [31] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer. In Proceedings of the 28th ACM international conference on information and knowledge management, pages 1441–1450, 2019. - [32] Md Mehrab Tanjim. Dynamicrec: A dynamic convolutional network for next item recommendation. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM-2020), 2020. - [33] Chenyang Wang, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu, and Shaoping Ma. Toward dynamic user intention: Temporal evolutionary effects of item relations in sequential recommendation. ACM Transactions on Information Systems (TOIS), 39(2):1–33, 2020. - [34] Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. Modeling item-specific temporal dynamics of repeat consumption for recommender systems. In The World Wide Web Conference, pages 1977–1987, 2019. - [35] Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. Make it a chorus: knowledge-and time-aware item modeling for sequential recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 109–118, 2020. - [36] Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. Make it a chorus: knowledge-and time-aware item modeling for sequential recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 109–118, 2020. - [37] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. Sse-pt: Sequential recommendation via personalized transformer. In Fourteenth ACM Conference on Recommender Systems, pages 328–337, 2020. - [38] Qitian Wu, Chenxiao Yang, Shuodian Yu, Xiaofeng Gao, and Guihai Chen. Seq2bubbles: Region-based embedding learning for user behaviors in sequential recommenders. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 2160–2169, 2021. - [39] Yuxia Wu, Ke Li, Guoshuai Zhao, and Xueming Qian. Long-and short-term preference learning for next poi recommendation. In *Proceedings of the 28th ACM international conference on information and knowledge management*, pages 2301–2304, 2019. - [40] An Yan, Shuo Cheng, Wang-Cheng Kang, Mengting Wan, and Julian McAuley. Cosrec: 2d convolutional neural networks for sequential recommendation. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pages 2173–2176, 2019. - [41] Haochao Ying, Fuzhen Zhuang, Fuzheng Zhang, Yanchi Liu, Guandong Xu, Xing Xie, Hui Xiong, and Jian Wu. Sequential recommender system based on hierarchical attention network. In IJCAI International Joint Conference on Artificial Intelligence, 2018. - [42] Xu Yuan, Dongsheng Duan, Lingling Tong, Lei Shi, and Cheng Zhang. Icai-sr: Item categorical attribute integrated sequential recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1687–1691, 2021. - [43] Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan Li, and Yongdong Zhang. How to retrain recommender system? a sequential meta-learning method. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1479–1488, 2020. - [44] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and Ed Chi. Recommending what video to watch next: a multitask ranking system. In Proceedings of the 13th ACM Conference on Recommender Systems, pages 43-51, 2019. - [45] Lin Zheng, Naicheng Guo, Weihao Chen, Jin Yu, and Dazhi Jiang. Sentiment-guided sequential recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1957–1960, 2020. - [46] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, and Ji-Rong Wen. S3-rec: Self-supervised learning for sequential recommendation with mutual information maximization. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pages 1893–1902, 2020.