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Abstract. Pattern structures propose a direct way to knowledge dis-
covery in data with structure, such as logical formulas, graphs, strings,
tuples of numerical intervals, etc., by defining closed descriptions and
discovery tools build upon them: automatic construction of taxonomies,
association rules and classifiers. A combination of lazy evaluation with
projections of initial data, randomization and parallelization suggest ef-
ficient approach which is scalable to big data.

1 Introduction

In many real-world knowledge discovery problems researchers have to deal with
complex descriptions different from binary datatables. In the last two decades
the use of closed descriptions defined either in terms of Galois connections, semi-
lattical similarity operation (i.e., operation which is idempotent, commutative,
and associative) or in equivalent terms of counting inference proved to be very
useful in various knowledge discovery applications, such as ontology and tax-
onomy engineering, mining association rules, machine learning, classification,
and clustering. Several attempts were done in defining closed sets of graphs and
closed graphs [24,32,26,30,28,1,18], strings [11,6], numerical intervals [23,22], log-
ical formulas [7,10], etc. In [15] a general approach called pattern structures
was proposed, which allows one to apply knowledge discovery tools to arbitrary
partially ordered data descriptions. Using pattern structures, one can compute
taxonomies, ontologies, implicational dependencies and their bases, association
rules, and classifiers in the same way as it is done with binary data.

To meet the big data challenge the problem settings of knowledge discovery
can be recast to allow for faster procedures. In this paper we show how the
classification problems for pattern structures can be reformulated to achieve
scalability even for complex descriptions.

The rest of the paper is organized as follows: In Section 2 we recall basic
definitions in pattern structures, give examples of graph-based and interval-
based pattern structures. In Section 3 we describe our approach to scalable
classification with pattern structures, and make a conclusion in Section 4.
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2 Knowledge Discovery with Pattern Structures

2.1 Main Definitions and Results

Let G be a set (of objects), let (D, �) be a meet-semi-lattice (of all possible
object descriptions) and let δ : G → D be a mapping. Then (G, D, δ), where
D = (D, �), is called a pattern structure, provided that the set δ(G) := {δ(g)|g ∈
G} generates a complete subsemilattice (Dδ, �) of (D, �), i.e., every subset
X of δ(G) has an infimum �X in (D, �). Elements of D are called patterns
and are naturally ordered by subsumption relation �: given c, d ∈ D one has
c � d ⇔ c � d = c. Operation � is also called a similarity operation. A pattern
structure (G, D, δ) gives rise to the following derivation operators (·)�:

A� = �g∈Aδ(g) for A ⊆ G,

d� = {g ∈ G | d � δ(g)} for d ∈ (D, �)
These operators form a Galois connection between the powerset of G and

(D, �). The pairs (A, d) satisfying A ⊆ G, d ∈ D, A� = d, and A = d� are
called the pattern concepts of (G, D, δ), with pattern extent A and pattern intent
d. Pattern concepts are ordered wrt. set inclusion on extents. The ordered set
of pattern concepts makes a lattice, called pattern concept lattice. For a, b ∈ D
the pattern implication a → b holds if a� ⊆ b�, and the pattern association rule

a →c,s b with confidence c and support s holds if s ≤ |a�∩b�|
|G| and c ≤ |a�∩b�|

|a�| .

Like in case of association rules [33,34], pattern association rules may be inferred
from a concise representation that corresponds to the set of edges of the diagram
of the pattern concept lattice. Operator (·)�� is an algebraical closure operator
on patterns, since it is idempotent, extensive, and monotone.

The concept-based learning model for standard object-attribute representa-
tion (i.e., formal contexts) [12,25,27] is naturally extended to pattern structures.
Suppose we have a set of positive examples G+ and a set of negative examples
G− w.r.t. a target attribute, G+ ∩ G− = ∅, objects from Gτ = G \ (G+ ∪ G−)
are called undetermined examples.

A pattern c ∈ D is a positive premise (classifier) iff

c� ∩ E− = ∅ and ∃A ⊆ E+ : c � A�

A pattern h ∈ D is a positive hypothesis iff

h� ∩ E− = ∅ and ∃A ⊆ E+ : h = A�

A positive hypothesis is the least general generalization of descriptions (“sim-
ilarity”) of positive examples, which is not contained in (does not cover) any
negative example. Negative premises (classifiers) and hypotheses are defined sim-
ilarly. Various classification schemes using premises are possible, as an example
consider the following simplest scheme from [12,26,15]: If description δ(g) of an
undetermined example g contains a positive premise (hypothesis) c, i.e., c � δ(g),
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and no negative premise, then g is classified positively. Negative classifications
are defined similarly. If δ(g) contains premises (hypotheses) of both signs, or if
δ(g) contains no premise (hypothesis) at all, then the classification is contra-
dictory or undetermined, respectively, and some probabilistic relaxation of the
above definitions of premises and hypotheses should be applied.

For some pattern structures (e.g., for the pattern structures on sets of graphs
with labeled vertices) even computing subsumption of patterns may be NP-hard.
Hence, for practical situations one needs approximation tools, which would re-
place the patterns with simpler ones, even if that results in some loss of infor-
mation. To this end we use a contractive monotone and idempotent mapping
ψ : D → D that replaces each pattern d ∈ D by ψ(d) such that the pattern
structure (G, D, δ) is replaced by (G, D, ψ ◦ δ). Under some natural algebraic
requirements that hold for all natural projections in particular pattern struc-
tures we studied in applications, see [30], the meet operation � is preserved:
ψ(X � Y ) = ψ(X) � ψ(Y ). This property of a projection allows one to relate
premises (hypotheses) in the original representation with those approximated by
a projection.The representation context of the projected case is obtained from
the unprojected one by removing some attributes. If ψ(a) → ψ(b) and ψ(b) = b
then a → b for arbitrary a, b ∈ D. In particular, if ψ(a) is a positive (negative)
premise in projected representation, then a is positive (negative) premise in the
original representation.

2.2 Pattern Structures in Applications

One may argue that a semi-lattice on descriptions is a too demanding require-
ment, but we can show easily that this is not the case. Any natural kind of
descriptions available for data analysis has an explicitly or implicitly given par-
tial order relation in the form of “is a” or “part of” relation. Having a partially
ordered set (P, ≤) of descriptions one can define a similarity operation � on sets
of descriptions as follows: For two descriptions X and Y from P

{X} � {Y } := {Z|Z ≤ X,Y, ∀Z∗ ≤ X,Y Z∗ �≥ Z},
i.e., {X}�{Y } is the set of all maximal common subdescriptions of descriptions
X and Y . Similarity of non-singleton sets of descriptions {X1, . . . , Xk} and
{Y1, . . . , Ym} is defined as

{X1, . . . , Xk} � {Y1, . . . , Ym} :=MAX≤(
⋃

i,j

({Xi} � {Yj})),

where MAX≤(X ) returns maximal elements of X w.r.t. ≤. The similarity oper-
ation � on sets of descriptions is commutative: X � Y = Y � X and associative:
(X �Y)�Z = X � (Y �Z). A set X of descriptions from P for which X �X = X
defines a pattern. Then the triple (G, (D, �), δ), where D is the set of all pat-
terns, is a pattern structure.

One can think of X � Y in the following way, which also gives a straightfor-
ward approach to computing �: One takes the set of all subdesriptions of all
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descriptions of X and takes set-theoretic intersection (i.e., ∩) of this set with
the set of all subdescriptions of all descriptions of Y. Finally, from the resulting
set of subdescriptions one chooses the maximal ones w.r.t. the partial order ≤
on descriptions.

Pattern Structures on Sets of Graphs. In [24,26] we proposed a semi-lattice
on sets of graphs with labeled vertices and edges. This semilattice is based on a
partial order given by subgraph isomorphism or its generalizations. For example,
in [26,15] the following natural order relation on graphs with labeled vertices and
edges, called domination relation, was proposed. Consider connected graphs1

with vertex and edge labels from set L partially ordered by �. Denote the set of
graphs with labeled vertices and edges by P . Each graph Γ from P is a quadruple
of the form ((V, l), (E, b)), where V is a set of vertices, E is a set of edges,
l : V → L is a function assigning labels to vertices, and b : E → L is a function
assigning labels to edges. In (P, ≤) we do not distinguish isomorphic graphs.

For two graphs Γ1 := ((V1, l1), (E1, b1)) and Γ2 := ((V2, l2), (E2, b2))
from P we say that Γ1 dominates Γ2 or Γ2 ≤ Γ1 (or Γ2 is a subgraph of Γ1) if
there exists an injection ϕ : V2 → V1 such that it respects edges: (v, w) ∈ E2 ⇒
(ϕ(v), ϕ(w)) ∈ E1 and fits under labels: l2(v) � l1(ϕ(v)), if (v, w) ∈ E2, then
b2(v, w) � b1(ϕ(v), ϕ(w)).

Obviously, (P, ≤) is a partially ordered set. Having a partial order on graphs,
one can use the definitions above to define similarity operation � and closure
operator (·)��. A set of graphs X is called closed if X�� = X . The closed set of
graphs consists of closed graphs as defined in [36]. A learning model based on
graph pattern structures along the lines of the previous subsection was used in
series of applications in chemo- and bioinformatics [16,30], in text analysis [14]
and conflict analysis [13]. Numerous types of projections were used in these
applications, like e.g. k-vertex subgraphs, k-length paths, cylcic subgraphs in
chemoinformatics, and noun, verb, and other types of phrases in natural language
processing.

Pattern Structures on Intervals. In practice, a typical object-attribute data
table is not binary, but has many-valued attributes. Instead of binarizing (scal-
ing) data, one can directly work with many-valued attributes by applying interval
pattern structures. For two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R,
we define their meet as

[a1, b1] � [a2, b2] = [min(a1, a2), max(b1, b2)].

This operator is obviously idempotent, commutative and associative, thus defin-
ing a pattern structure on tuples (vectors) of intervals of attribute values. The
lattice of interval pattern structures is isomorphic to the concept lattice of the
context that arises from the interordinal scaling of the initial many-valued nu-
merical context, where for each table value a two binary attributes ≥ a and ≤ a

1 Omitting the condition of connectedness, one obtains a similar, but computationally
much harder model.
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are introduced. However, interval tuples give better understanding of results and
computation with them is faster than that with the interordinal scaling, as shown
in experiments with gene expression data [22].

3 Scalable Classification with Pattern Structures

The goal of computing implications, association rules, premises, hypotheses, and
there concise representations is to “understand” data by creating “knowledge” in
the form of implicational dependencies, and to use these dependencies for mak-
ing predictions for new data. Intractability results on the sizes of concepts [27],
implication bases [29,9,3], (minimal) hypotheses [27,2] say that the amount of
“knowledge” generated from data without due filtering can be larger than data
themselves. If one uses knowledge for making predictions, i.e., defining missing
information, say classes of objects described by new data, one does not need
having all “knowledge” given explicitly, one just needs having predictions equiv-
alent to those made when all knowledge is there. To attain this goal, one can
note that classification by means of premises can be done in a “lazy” way with-
out explicit computation of all premises. Classification can be described in the
extended pattern structure

(G, (D∗,�∗), δ∗) = (G, ((D,�) × ({0, 1},∧)), δ ∪ val),
where ∧ is logical conjunction and the mapping val : G→ {0, 1} says whether an
object has the target attribute or not. Below we show how it works for premises
in the classification scheme defined above.

Many algorithms for computing concept lattices, like NextClosure [17] and
CbO [25], may be adapted to computing pattern lattices in bottom-up way.
The worst-case time complexity of computing all pattern concepts of a pattern
structure (G, D, δ) in the bottom-up way is O((p(�) + p(�)|G|) · |G| · |L|),
where p(�) is time needed to perform � operation, p(�) is time needed to test �
relation, and L is the set of all pattern concepts. In case of graphs, even p(�) may
be exponential w.r.t. the number of graph vertices, that is why approximations
(like those given by projections) are often needed. For a fixed projection size
p(�) and p(�) can be considered constant. To compute graph patterns in the
top-bottom way, e.g., for computing frequent patterns, one can update CbO
algorithm by getting access to the “fine” structure of descriptions, like it was
done for graphs in [28]. The worst-case time complexity of computing the set of
interval pattern structures is O(|G|2 · |M | · |L|), where M is the set of attributes,
which in practice can be much lower than the worst-case complexity of computing
the set L of all concepts of the interordinally scaled numerical context, which is
O(|G|2 · |W | · |L|), where W is the set of all attribute values.

3.1 Lazy Classification

Suppose we have a training set (negative and positive examples wrt. some target
attribute) and unclassified examples, all object descriptions given by a pattern
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structure. Then the target attribute of the description of an object gn to be
classified with respect to the premises can be computed as the closure (w.r.t.
(G, (D∗,�∗), δ∗)) of the intersection of the description of gn with description
of every object g ∈ G. If for some object g the closure contains the target
attribute, gn is classified positively by premises of (G, (D∗,�∗), δ∗), otherwise it
is classified negatively. Computationally, this can be described as the following
simple two-stage procedure:

1. For every g ∈ G compute (δ(gn)�δ(g))�, i.e. select all objects from G whose
descriptions contain δ(gn) � δ(g). This takes O(|G| · (p(�) + |G| · p(�))) time.

2. If for some g ∈ G all objects from (δ(gn)� δ(g))� have the target attribute,
classify gn positively, otherwise negatively. This takes O(|G|2) time for looking
for the target attribute in object descriptions in at most |G| families of object
subsets, each subset consisting of at most |G| objects.

Example. Consider a training sample with four positive examples having
descriptions {G1}, {G2},{G3},{G4}, three negative examples having descriptions
{G5},{G6},{G7}, and unclassified examples having descriptions {G8},{G9}.

Descriptions of positive examples:

G1 : C

CH3C OH

NH2H2N

G2 : C

CH3C OH

OHH2N

G3 : C

CH3C OH

CH3Cl

G4 : C

CH3C Cl

ClHO
Descriptions of negative examples:

G5 : C

CH3C NH2

NH2H2N

G6 : C

CH2N OH

H3C Cl

G7 : C

CH2N OH

ClH2N

Descriptions of unclassified examples:

G8 : C

CH3C OH

NH2Cl

G9 : C

CH2N CH3

ClHO

Classification results:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH3C OH

NH2Cl

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH3C OH

NH2H2N

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH3C OH

NH2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH3C OH

NH2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�

= {1, 2} ⊆ G+,

i.e. example with description G8 is classified positively.
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH2N CH3

ClHO

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH2N OH

ClH3C

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH3C

HO

, C

CH2N

Cl

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH3C

HO

, C

CH2N

Cl

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�

= {6} ⊆ G−,

i.e. example with description G9 is classified negatively.

Proposition 1. Classification of an object with premises can be done in O(|G| ·
(|G| · p(�) + p(�)))· time and in O(|G|2) time in projections of fixed size.

The lazy approach to classification described above is close to some standard
approaches like Nearest Neighbors [37] (finding nearest classes in metric spaces),
Case-Based Reasoning [20] (classifying similar to classification of similar cases),
abduction in Horn theories [21] (lazy evaluation from models instead of generat-
ing implications on Boolean variables), however differs from them in being based
on partially ordered structures, not metric or Boolean.

We have reduced classification to computing (δ(g) � δ(gn))� and testing the
target attribute in all objects of this set. This computation is easily parallelizable:
one partitions the dataset G in G = G1 ∪ . . . ∪ Gk, where k is the number of
processors, computes in each Gi the set of objects (δ(g) � δ(gn))

�i , tests the
target attribute for all objects in the union of these sets over i. Thus, we have
the following

Proposition 2. Classification of m objects with premises using k processors can
be done in O(|G| · (|G| · p(�) + p(�)) ·m/k) time and in O(|G|2 · n/k) time in
projections of fixed size.

The computation can also be easily randomized by taking random objects
from each of Gi for computing the closures. To this end, one needs to use a
probabilistic relaxation of the definitions of premises and classifications.

4 Conclusion

Pattern structures propose a useful means for discovering dependencies in data
given by complex ordered descriptions, such as numerical data, data given by
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graphs as in chemoinformatics and natural language processing, or strings in
the analysis of processes. Using projections, parallel computations and random-
ization, one can propose scalable approach to knowledge discovery with pattern
structures by reducing algorithmic complexity from double exponential to low
degree polynomial.
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University Higher School of Economics (Moscow).
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