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Abstract. Concept stability was used in numerous applications for se-
lecting concepts as biclusters of similar objects. However, scalability re-
mains a challenge for computing stability. The best algorithms known so
far have algorithmic complexity quadratic in the size of the lattice. In
this paper the problem of approximate stability computation is analyzed.
An approximate algorithm for computing stability is proposed. Its com-
putational complexity and results of computer experiments in comparing
stability index and its approximations are discussed.
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1 Introduction

The approaches to data analysis and data mining using concept lattices for
clustering and ontology engineering often encounter the problem of the large
number of concepts of a formal context. There may be exponentially many for-
mal concepts wrt. the size of the underlying context, the problem of computing
the number of formal concepts given a context being #P-complete [5]. Several
indices were proposed for measuring concept quality, such as concept stabil-
ity [16I8J9], probability and separation [I3]. Stability was used in numerous
applications for selecting concepts as biclusters of similar objects, e.g., in tech-
nical diagnostics [I], in detecting scientific subcommunities [9TTI0], in planing
medical treatment [I2JI7], or in grouping French verbs [T4T6/T15]. In [13] the au-
thors compared filtration based on various indices and their linear combinations
for data recovery. Linear index combinations that showed the best performance
in computer experiments on concept filtration use stability with large weights.
However, a potential constraint for applying stability for large data is the com-
plexity of its computation, shown to be #P-complete in [I)8]. Sergei Obiedkov
et al. proposed [I1I] an algorithm for computing stability index for all concepts
using the concept lattice. This algorithm was quite good in practical applica-
tions so far, but in the worst case its complexity is quadratic in the size of the
lattice (which itself can be exponential in the input context size). In this paper
we consider the problem of approximate stability computation. We propose an
approach to approximation, consider its computational complexity and discuss
results of computer experiments in comparing stability index and its approxima-
tions. The rest of the paper is organized as follows. In the next section we recall
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main definitions related to FCA and concept stability, in Section 3 we discuss
the complexity of approximations of the number of all closed and nonclosed sets,
in Section 4 we consider computation of stability and in Section 5 we discuss
results of computer experiments.

2 Main Definitions

2.1 FCA

Here we briefly recall the FCA terminology [3]. Let G and M be sets, called
the set of objects and attributes, respectively. Let I be a relation I C G x M
between objects and attributes: for ¢ € G,m € M, gIm holds iff the object g
has the attribute m. The triple K = (G, M, I) is called a (formal) context. If
A C G,B C M are arbitrary subsets, then a Galois connection is given by the
following derivation operators:

A'={me M| glmVg e A}
B'={g€G|gImVm e B}

The pair (A, B), where A C G, BC M, A’ = B, and B’ = A is called a (formal)
concept (of the context K) with extent A and intent B (in this case we have also
A" = A and B” = B).

The operation (-)” is a closure operator [3], i.e. it is idempotent (X" = X",
extensive (X C X”), and monotone (X CY = X" CY"). Sets ACG, BC M
are called closed if A” = A and B” = B. Obviously, extents and intents are
closed sets. The set of attributes B is implied by the set of attributes A, or the
implication A — B holds, if all objects from G that have all attributes from the
set A also have all attributes from the set B, i.e. A’ C B’. Implications obey the
Armstrong rules:

A— B A— B, BUC—D
A—- A AUC— B’ AUuC — D

A subset X C M respects an implication A — B if A C X implies B C X. Every
set of implications J on the set M defines a closure operator (-)¥ on M, where
a subset of M is closed iff it respects all implications from J

2.2 Stability

The notion of stability of a formal concept was first introduced in [IJ§] and now
is used in a slightly revised form from [9TT].
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Definition 1. Let K = (G, M, I) be a formal context and (A, B) be a formal
concept of K. The (intensional) stability ;,(A, B), or gin(A), is defined as
follows:

[CCA|C = B|
O'm(A,B) = 9lA|

The extentional stability is defined in the dual way:

CCB|C"=B
Oex(A,B) = 0¢2(B) = s 2||B‘ |

Usually, when it does not lead to misunderstanding, subscripts ;, and ., are
omitted.

The numerator of intensional stability v(A,B) = |C C A | C' = B is the
number of all generators of the concept (4, B), so

M= ¥ 4 D)

(C,D)<(A,B)

and

7(A7B) = Z Z‘C‘M((C7D)7(A73))v
(C,D)<(A,B)

where p(z,y) is the Mobius function of the concept lattice. Thus, stability nom-
inator is dual to powersets of extents of the concept lattice wrt. the Mobius
function of the concept lattice. This is reflected in the algorithm from [I1] for
computing stability, which is implicitly based on inclusion-exclusion principle,
like standard algorithms for computing the Mdbius function of a lattice.

3 Approximation of the Number of Closed and Nonclosed
Sets

Many counting problems in FCA are known to be #P-complete but it does
not imply that they cannot be solved approximately in polynomial time. For
example, the problem of counting satisfying assignments for a DNF (unlike the
dual problem for CNF) can be solved approximately using so-called FPRAS [2].
A randomized approximation scheme for a counting problem f: X* — N (e.g.,
the number of formal concepts of a context) is a randomized algorithm that
takes as input an instance x € X* (e.g. a formal context K = (G, M, I)) and an
error tolerance € > 0, and outputs a number N € N such that, for every input
instance z,

Pri(L—e)f(@) <N < (1+e)f(@)] = °
If the time of randomized approximation scheme is polynomial in |z| and 7!,
then this algorithm is called fully polynomial randomized approximation scheme,
or FPRAS.
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Below, for the problem Problem we will denote the number of solutions of
Problem on corresponding input (which will be clear from the context) by
|# Problem.

Given a hypergraph G = (V, &), € ={F1,...,E,}, asubset U C V is called
independent set if E; ¢ U for any 1 <4 < m and is called coindependent set if
U{ E; forany 1 <i<m.

Problem 1. Counting independent set (#IS)
INPUT: A hypergraph G.
OUTPUT: The number of independent sets of all sizes of G

Tt is known that there is no FPRAS for #IS unless RP = NP (see [4]) when the
hypergraph is a simple graph. So we can see this problem is hard even when V'
and {0} are not edges of the hypergraph.

We also need the formulation of the following problem.

Problem 2. Counting coindependent sets (#CIS)
INPUT: A hypergraph G = (V,€), € ={F1,...,En}, E;CV.
OUTPUT: The number of coindependent sets of G.

Note that set U C V is an independent set of a hypergraph G = (V,€), & =
{E1, ..., En}ift V\U is a coindependent set of the hypergraph G’ = (V, '), &' =
{V\E1,...,V\ E,}. Thus there is no FPRAS for #CIS, unless RP = NP.

Now we are ready to discuss complexity of the counting problems for nonclosed
sets of a formal context, closed sets of the closure system given by implication
base, and nonclosed sets of the closure system given by implication base.

Problem 3. Counting nonclosed sets (#NC)
INPUT: A formal context K = (G, M, I)
OUTPUT: The number of sets A C M that A” # A

Proposition 2. There is no FPRAS for #NC, unless RP = NP

Proof. Consider any input instance (V, &), V={v1,...,v,} E={F1,..., En} of
#CIS. From this instance we construct the formal context K = (G, V, I) with the
set of object intents (J, <, <, i U {E; \ {vi}} U{E; \{v2}} U...U{E; \ {vn}}.
Obviously, the set A C V is a coindependent set of hypergraph (V, &) iff A” # A
or A=V for the context K. Hence |#CIS| = |[#NC|+ 1. O

Problem 4. Counting closed sets of implication base (#C7)
INPUT: An inplication base J = {41 — B1,...,Am = B}, 4;,BiC M
OUTPUT: The number of closed sets of J.

Proposition 3. There is no FPRAS for #C5, unless RP = NP
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Proof. Consider any input instance (V,€), € = {F1,..., En,} of #IS. From
this instance let us construct the implication base § = {Ey = V,...,E,, — V}
(implications are defined on the set V). Obviously, a set U is an independent set
of hypergraph (V, £) iff U is closed set of J and U # V. Hence |#IS| = |#C5|—1.

O
Since a closed set wrt. an implication base can be represented as a satisfying
assignment of a Horn CNF, we immediately get

Corollary 1. There is no FPRAS for the counting problem of Horn CNF satis-
fiability (#Horn SAT), unless NP = RP.

Problem 5. Counting nonclosed set of implication base (#NCj)
INPUT: An inplication base J = {A; — B1,..., Ay, — B}, 4;,BiC M
OUTPUT: The number of nonclosed sets of J.

Proposition 4. There is FPRAS for #NCj5

Proof. Consider an instance J = {A; — Bi,...,An — Bn}, 4,,B; C X
of #NC75. Closed sets of implication base J are in one-to-one correspondence
with the satisfying truth assignments of the corresponding Horn CNF f5. Thus
nonclosed sets of J are in one-to-one correspondence with satisfying truth as-
signments of DNF —f5. There is a known FPRAS for the counting problem of
satisfying assignments of a DNF [2]. o

It is worth to note that exact complexity of approximate counting of a closed
set of a formal context is open, but it is known that this problem is complete in
class #RHII; [4]. All of the above results of this section can be summarized in
the following table.

Table 1. Complexity of closed/nonclosed sets counting

#£closed sets #nonclosed sets
cs(K) #RH II,-complete no FPRAS, unless RP = NP
¢s(J) no FPRAS, unless RP = NP FPRAS

¢s(K) denotes the case where a closure system is given by context K.
¢s(J) denotes the case where a closure system is given by implication base J.

4 Computation of Stability

Recall that exact computing of concept stability is an #P-complete
problem[TI6I8]. Moreover, there is no FPRAS for computing stability, unless
RP = NP. In order to show this fact consider the context from the proof of
proposition2 Clearly o(M) = (|#NC|+1)/2/M!. Here we discuss how to approx-
imate stability with bounded absolute error. By definition of stability, stability
of an intent A of a formal context K = (G, M, I) equals to the probability that
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a closure of a random subset of A is equal to A, i.e. 0(A) = Pr(X"” = A), when
X is chosen uniformly and random from 24. Thus to estimate o(A) we can use
a Monte Carlo method.

GETSTABILITY (A, N)

1 answer <0

2 fori+ 1to N

3 do pick random subset X of A

4 if X"=A

5 then answer < answer +1
6 answer « "

7

return answer

Recall Chernoff-Hoeffding theorem with simplified bounds [2].

Theorem 5 (Chernoff-Hoeflding). Let X, Xo,..., Xy be independent and
identically distributed random variables with p = E(X ) Then

1
Pr(N ZXi <p—e) <exp(—2e°N)
It is easy to get the following proposition which states that for sufficiently large
N = N(g,6), the probability of | answer —a(A)| > ¢ is not greater than §.

Proposition 6. The Monte Carlo method yields an approzimation to o(A) with
probability at least 1 — § and absolute error € provided

1
N > 92 In

Proof. If we take random variables to be 1 — X;, and substitute them in the
inequality of the Chernoff-Hoeffding theorem, then we have p = E(1 — X;) and
we get

1 2
Pr(NZXZ- >p+e) <exp(—2=N).

Hence

ZX p|>¢) <
1
§PT(NZXi§p76)+Pr(NZX¢Zp+5)§

< 2exp (—2¢2N).

Consider random variables X; such that X; = 1iff X"/ = A in the i-th iteration of
GETSTABILITY and X; = 0 otherwise. Thus ]{, > X; = answer, where answer is
returned by GETSTABILITY (A,N) at the ith iteration. Absolute error probability
is Pr(| answer —p| > ) < 2exp (—2¢2N) < 6. Hence 26N >In 3. O

We can use results of this algorithm to select top approximate stable concepts
using the following straightforward algorithm.
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ToPSTABLECONCEPTS(K, 7o)

1 answer < 0

2 for every concept C'= (4, A") of K

3 do if approzStability(A) > oy

4 then answer < answer U{(A4, A’)}
5 return answer

5 Experimental Results

In this section we discuss experimental results in computing stability approx-
imations for random contexts of various sizes and density. The results of the
approximate stability computation on random contexts are presented in Fig-
ure 1 and Figure 2. The Y-axis (labeled as Error) gives the relative error

IS(K,5,09)AS(K,0,06)|/|S (K, 7,00)|.

Here S(K, 0, 04) denotes the set of all concepts with stability o > gg; S(K, &, 0p)
denotes the set of all concepts with approximate stability & > oy, where oy is
a parameter (stability threshold). For every pair ¢ € G, m € M of a random
context K = (G, M,I) one has (g,m) € I with probability d called context
density.

05 r r r
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' threshold =09 ——

04 | ]
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Fig. 1. Approximation quality for random contexts 100 x 30 with density 0.3
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Fig. 2. Approximation quality for random contexts 150 x 30 with density 0.2

The results of computer experiments show that the algorithm for computing
approximated stability algorithm has better precision when stability threshold is
lower. This behaviour is consistent with theory, since when the stability threshold
is high the number of stable concept is small and a small deviation of this
threshold can result in significant change of the relative number of ”stable”
concepts (i.e. concepts with approximate stability larger than threshold).

6 Conclusion

The problem of approximate stability computation was analyzed. Approximate
solution of the problem was shown to be hard: the existence of FPRAS solving
this problem would imply NP = RP. An approximate algorithm for computing
stability, which can run in reasonable time for approximations with bounded ab-
solute error was proposed. Its computational complexity and results of computer
experiments in comparing stability index and its approximations were discussed.
The results show that the approximations are better when stability threshold is
low. Further study will be related to comparing approximate stability to other
concept interestingness measures, such as independence, probability, wrt. compu-
tation time and selectiveness. Another challenging task would be the generation
of interesting concepts without generating the set of all concepts.
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