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Abstract. A learning model is considered in terms of formal concept
analysis (FCA). This model is generalized for objects represented by sets
of graphs with partially ordered labels of vertices and edges (these graphs
can be considered as simple conceptual graphs). An algorithm that com-
putes all concepts and the linear (Hasse) diagram of the concept lattice
in time linear with respect to the number of concepts is presented. The
linear diagram gives the structure of the set of all concepts with respect
to the partial order on them and provides a useful tool for browsing or
discovery of implications (associations) in data.

1 Introduction

In this paper we propose an efficient algorithmic framework for learning sim-
ple conceptual graphs and constructing the diagrammatic representation of the
space of these graphs, which may be used for solving knowledge discovery pro-
blems. We consider a model of learning from positive and negative examples
in terms of formal concept analysis (FCA) [14], [5]. FCA proved to be a hel-
pful mathematical tool for various branches of knowledge processing, including
conceptual clustering, browsing retrieval [I], and generation of association rules
in data mining [II]. We show how this model can be extended to data more
general than classical contexts. To this end, we give a definition of the closure
operation based on an arbitrary semilattice. Classical binary contexts [14] are
obtained when semilattice is taken to be a Boolean lattice. As an example we
consider a semilattice induced by a set of graphs with partial ordered labels of
vertices. These graphs can be interpreted, for example, as molecular graphs or
as conceptual graphs [13], [T0] without negation and nestedness, i.e., as simple
conceptual graphs. We present some results on algorithmic complexity of gene-
rating the concept lattice arising from the semilattice on sets of these graphs.
The problem of computing the number of all concepts is #P-complete, however,
an algorithm that constructs linear (Hasse) diagram of the concept lattice in
time linear with respect to the number of concepts can be proposed. This result
improves the quadratic worst-case time bounds for algorithms given in [7], [12],

[6], and [1].
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2 Learning from Examples in Formal Concept Analysis

In general terms, the model proposed in [3] is based on the common paradigm of
machine learning: given positive and negative examples of a concept, construct
a generalization of the positive examples that would not cover any negative
example. First, we present a particular case of the model, which can easily be
described in terms of FCA. The following definition recalls some well-known
notions from [14], [B].

Definition 1. Let G be a set of objects, M be a set of attributes, and I be a
relation defined on G x M: for g € G, m € M, glm holds iff the object g has
the attribute m, the triple K = (G, M, ) is called a context. If AC G, BC M
are arbitrary subsets, then the Galois connections are given as follows:

A'={m € M|gIm for all g € A}, B’ = {g € G|gIM for all m € B}.

The pair (4, B), where A C G, B C M, A’ = B, and B’ = A is called a
concept (of the context K ) with extent A and intent B (in this case we have also
A" = A and B” = B). The set of attributes B is implied by the set of attributes
A, or implication A — B holds, if all objects from G that have all attributes
from the set A also have all attributes from the set B, i.e., A’ C B’.

Now assume that W is a functional (goal) property of objects from a domain
under study. For example, in pharmacological applications [3] W can be a bio-
logical activity of chemical compounds (like carcinogenicity or, to the contrary,
some useful pharmacological activity like sedativity). Thus, W is opposed to the
attributes from M, which correspond to structural properties of objects. For ex-
ample, in pharmacological applications the structural attributes can correspond
to particular subgraphs of the molecular graphs of chemical compounds.

Input data for learning can be represented by the sets of positive, negative,
and undefined examples. Positive examples are objects that are known to have
the property W and negative examples are objects that are known not to have
this property. Undefined examples are those that are neither known to have
the property nor known not to have the property. The results of learning are
supposed to be rules used for the classification of undefined examples (or forecast
of property W).

In terms of formal concept analysis, this situation can be described by three
contexts: a positive context K = (Gi, My, I;), a negative context K_ =
(G_,M_,I_), and an undefined one K, = (G,,M,,I.). Here G., G_, and
G, are sets of positive, negative, and undefined examples, respectively; M is a
set of structural attributes; I; C G; x M, j € {4+, —, 7}, are relations that specify
the structural attributes of positive, negative, and undefined examples. Now, a
positive hypothesis from [2], [3] (called JSM-hypothesis there) can be defined in
the following way.

Definition 2. Consider a positive context K = (G, My, 1) and a negative
context K_ = (G_, M_,I_). A pair (e4,i_) is a a positive concept if it is a
concept of the context K. If intent iy of a positive concept (ey,iy) is not
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contained in the intent of any negative concept (i.e., Vg_ € G_, iy € {g-}')
and |e4| > 2, then the concept (e, i) is called a positive hypothesis with respect
to the property W. Negative hypotheses are defined dually.

Thus, a hypothesis is an implication with a fixed consequent and antecedent

equal to the intent of a positive concept. Note that if (ei,iy) is a positive
hypothesis with respect to the property W, then iy — {W} is an implication
for the context K = (GLUG_, MU{W}, I, UI_UG x{W}). Hypotheses can
be used for the classification of undefined examples from G (i.e., for forecasting
whether they have the property W or not). If an undefined example g, € G, has
all attributes from the intent i of a positive hypothesis (e, i) (i.e., {g-} 2D iy)
and does not have all attributes from the intent of any negative hypothesis, then
g- is classified positively. Negative classifications are defined dually. If {g, }’ does
not contain the intent of any negative or positive hypothesis, or includes intents
of hypotheses of different signs, then no classification is made.
Example 1. Consider the following sets of positive and negative examples: G =
{X1, Xa, X3, X4}, G- = {7, Y2, Y3, Y4}, and the undefined example g,, where
{(Xa} ={A4,B,C}, {Xo} ={A,B, D}, { X3} = {A, E. F}, {X4} = {A,C,G};
Y ={A F,G}, {Yo} ={A, D, F},{Ys} ={B,E, F,G}, {Va} ={B, D, F'},
{9:}' = {A,B, D, E}.

The pairs ({X1, Xo}, {A, B}), ({X1, X4}, {A,C}) are positive hypotheses.
The pair ({X1, Xo, X3, X4}, {A}), which is a positive concept with extent larger
than one, is not a positive hypothesis, since {A} C {Y1},{Y2}'. The negative
hypotheses are ({Ys,Ys}, {B, F}), ({Y2,Ya}), {D, F}), ({Y1,Ys}, {F,G}). Since
{A, B}, the intent of the first positive hypothesis is contained in {A, B, D, E'}, the
intent of the undefined example, whereas no negative intent does, the undefined
example {g;,} is classified positively. &

3 Extension of the Learning Model

In this section we use a simple construction from [J], where a partial order on
graphs with ordered labels of vertices and edges is completed to a semilattice
(actually to a distributive lattice).

Let {2, be a set of graphs with partially ordered labels of vertices and edges.
For molecular graphs this can correspond to some natural hierarchy of classes of
chemical elements.

Suppose that two graphs F = ((Vp, M), Er) and H = ((Vg, My), Ex)
from {2, are given. Here Vg, Vi are sets of vertices, M, My are sets of vertex
labels, Er, Ep are sets of edges, respectively, Ep C Vi X Vp; Eg C Vg X V.
The sets mp and my belong to a set of labels ordered with respect to some
ordering <. We shall consider only vertex labeling. The case with labeled edges
and vertices can be reduced to the case where only vertices are labeled.
Definition 3. F subsumes H or H =< F' iff there exists one-to-one mapping ¢
from the set V into the set Vr that maps each vertex vy € Vg with label my
to a vertex vp € Vi with label mp such that my(vy) < mp(vp). The mapping
should not violate incidence relation, i.e. if (a, b) € Eg, then (¢(a), p(b)) € Ep.{
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The graphs of the aforementioned form can be interpreted as conceptual
graphs [13], and =< as the specialization relation [10]. The relation < is a gene-
ralization of the “subgraph isomorphism” relation and coincides with it when
labels are not ordered.

Definition 4. Let H = {H;,...,H,} and H,,...,H, € £2,. Then N(H) =

Fori# j {H;}N{H;} = N{H : H < H;,H < H;}) (the set {H,;} N {H;}
consists of all graphs maximal by inclusion among those subsumed by both H;
and Hj.

Let X = {Hy,...,H,} and F = {Fy,...,F,} be sets of graphs from (2.

i

Example 2. Let F; and F, be molecular chemical graphs given in Fig. 1.
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The vertex labels of the graphs are ordered as follows (z denotes “an arbitrary
chemical element”): @ < C, © < N, & < Cl, the labels C, N, and CI are
incomparable. Then {F;} M {Fy} = {H;y, Ho, H3}, where Hy, Ho, and Hs are
given in Fig. 2.
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Here, the disconnected graph H; contains more information about the cyclic
structure, whereas Ho and Hj3 contain more information about the connection
of the cycle with the vertex labeled by “C1”.

It is easily seen that operation M induces a semilattice Qév with the set
of generators {2, (i.e., M is idempotent, commutative, and associative on .Qév ).
Thus, the order relation T can be defined as usual: X CY = X MY = X. Now
we define operations ’ and ” analogous to those from Section 2.

Definition 5. Let Hy, ..., H), € {2,, then

{Hy,....H,}Y = {H,}...n{H},
{Hl,...,Hk}” = {H S QQ{H} | {Hl}l_l...FI{Hk}}.

It can be shown that " is a closure operation on Qév (i.e., it is extensive,
idempotent, and monotone). For arbitrary X,..., Xy € 2, the pair ({X;,...,
Xi}t, {X1,..., Xi}") is called a concept with extent {Xy,..., Xi}" and intent
{X1,..., X},

The closure operator ” and concept from Definition 1 can be obtained from
Definition 5 when (2, is a set of objects G, Qév is the set of attributes M, I
is the set-theoretic intersection N defined on subsets of attributes M, the terms
H, Hy,...,Hy stay for objects from G and {H}, {H},...,{Hg} stay for their
intents. Note that the operation M and the corresponding ” can be defined in
lines of Definitions 4-5 for arbitrary partial orders (and thus, data types), not
only for those given in Definition 3.

4 Algorithms and Complexity

A crucial problem here is that of generation of all concepts of a given context. It is
difficult not only to generate the set of all concepts, whose size can be exponential
in the size of the source context, but also to calculate or even estimate its size,
since the problem of computing all concepts is # P-complete [§].

Now we describe an algorithm similar to that from [4], which generates the
set of all concepts. We transform it in an algorithm generating Hasse diagram
in time linear with respect to the number of all concepts.

Let the type of objects and the corresponding closure operator ” be fixed
(they can be either from Definition 1 or from Definition 5). Below, for definiteness
sake, we shall speak in terms of Definition 1, however, all the formulations are
the same for {2, and the operations ' and ” from Definition 5. We assume that
objects from G are numbered, and therefore, a set X C G can be represented
by a correspondingly ordered tuple. The numbering of objects from G induces
lexicographical ordering of sets from P(G), the powerset of G.

Definition 6. A path is defined inductively as follows:

(W) Ifge Gand {g}' ={9}UZ, g¢ Z, Z C G, then [(0,{g})Z] is called a
path and {g}" is called the eztent of the path or Ext[((), {g})Z]. We also say that
[(0,{g})Z] is an inference of {g}". The inference [(0, {g})Z] of {g}" is canonical
(or the path [(0,{g})Z] is canonical) iff the numbers of all objects from Z (in
the sense of numbering of objects from G) are greater than the number of g.
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(2) If Y isapath, h € G, (Ext(Y)U{h})” = Ext(Y)U{h}UZ, ZNY = 0, then
[(Y,{Rh})Z] is a path. Ext[(Y,{h})Z] = (Ext(Y)U{h})”" = Ext(Y)U{h}UZ. We
say that [(Y, {h})Z] is an inference of (Ext(Y)U{h})"”. The inference [(Y, {h})Z]
of (Ext(Y)U{h})"” is called canonical iff Y is a canonical path and the numbers
of all objects from Z are greater than the number of h. {

The following procedure (we call it Close-by-One or CbO Algorithm) is based
upon the depth-first strategy, though other strategies are possible as well. Y
denotes the path to the current concept.

Algorithm 1.

Step 0. There is only one root vertex where all objects are unlabeled, Y := ().
Step 1. The current vertex corresponds to the concept with the extent Y. The
first unlabeled object from G, say X;, is taken and labeled at Y, (Ext(Y) U
{X;}) and (Y U{X;})” = (Ext(Y) U {X;} U Z are computed. A new vertex
that corresponds to (Ext(Y) U{X;})” is generated and connected to the vertex
associated with Y.

Step 2. If Z contains objects with numbers less than i (i.e., the path [(Y, X;)Z] is
not canonical), then we label all objects from G at the vertex (Ext(Y)U{X;})”
(thus, the branch will not be extended). If Z does not contain objects with
numbers less than i (i.e., [(V, X;)Z] is canonical), then we label all objects from
(Ext(Y)U{X;})"U{Xy,..., X;_1} at the vertex (Ext(Y)U{X;})".

Step 3. If all elements of G are labeled at (Ext(Y) U {X;})"”, we go to Step 4.
Otherwise, Y: = [(Y, X;)Z], and we return to Step 1.

Step 4. We backtrack the tree upwards to the nearest vertex with unlabeled
elements of G. If such a vertex exists and corresponds, say, to the path Z, then
Y:= Z and we go to Step 1. If such a vertex does not exist, then this means
that all concepts have been generated and the algorithm halts.

Example 3. Consider objects X, X5, X3, X, from Example 1. In this case, Al-
gorithm 1 constructs the tree with the following left-most branch: root — [(X7)X5]
— [([(X1)X2] X3)X4], which consists of two non-root vertices. Both these vertices
are canonical. $

Theorem 1. The tree output by Algorithm 1 has O(|G||L|) vertices. The canoni-
cal vertices of this tree are in one-to-one correspondence with the concepts. The
time complexity of Algorithm 1 is O((a + B|G|)|G||L|) and its space complexity
is O((v|G||L|)), where « is time needed to perform M operation and [ is time
needed to test C relation and ~y is the space needed to store the largest object from
Qév. When contexts and concepts are given by Definition 1, the time complexity
is (|[M||G|?|L|) and the space complezity is O(|M||G||L]|).<$

In general, the computation of M and C is NP-hard, but in some realistic
cases it may be polynomial [10].

The lattice order agrees with that of the tree constructed by Algorithm 1
(called CbO tree), however the corresponding incidence relation (that defines
edges of the Hasse diagram) does not agree with the incidence relation in the
tree. To construct the Hasse diagram of the lattice, we need to connect each pair
of vertices in the tree that correspond to adjacent vertices in the diagram. To
this end, we run the following algorithm in the depth-first left-most order.
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Algorithm 2

Step 0. We are in the root vertex of the CbO tree constructed by Algorithm 1.
Y:=0, Fr(C): = (), and To(C): = () for all concepts C'. All vertices are unlabeled.
Step 1. The current canonical vertex corresponds to the concept with the extent
Y. For each element X; of G we compute (Y U{X;})" and (Y U{X;})”. Among
sets (Y U{X;})”, ¢ = 1,...,|G|, we select those minimal by inclusion. These
are extents of concepts adjacent to (Y,Y”) from below. We denote the set of
these extents by M(Y). Fr(Y'):= {{(Y,Y"),(Z,2'))|Z € M(Y)}. Thus, the set
of arcs in the Hasse diagram leading from the vertex (Y,Y”) to its children is
constructed. We label the vertex Y and number the elements of M (Y") using the
numbering of G).

Step 2. For every extent E € M(Y') we take the corresponding concept (E, E')
and find its canonical inference. This is equivalent to finding the corresponding
canonical path in the tree generated by Algorithm 1. We update the set of arcs
leading to (E, E') by letting To(E'): =To(E) U {{(E, E"),(Y,Y"))}.

Step 3. If there are unlabeled canonical vertices corresponding to extents in
M(Y), we pass from Y to the first of them (with respect to the numbering on
elements of M (Y') given in Step 2), say Z, Y:= Z and return to Step 1. If there
are no such vertices and Y is not the root of the tree, we backtrack to the parent
of Y in the tree, denote it by R(Y'), Y:= R(Y) and return to Step 3. If Y is the
root of the tree and there are no unlabeled vertices corresponding to extents in
M(Y), then algorithm halts.

For every concept C' Algorithm 2 outputs sets Fr(C') and To(C) of arcs that
lead to concepts immediately adjacent to C' in the Hasse diagram from above
and below, respectively. Thus, the CbO tree, together with sets Fr(C') and To(C')
related to each canonical vertex is a representation of the concept lattice. Unlike
the incidence matrix of a lattice, whose size is quadratic in the number of con-
cepts, the size of this structure and time needed to construct it are linear. Given
also a negative context at the input, one can generate hypotheses by slightly mo-
difying Algorithm 2: at Step 3 it should also be tested whether positive intents
are not subsumed by negative examples. The algorithm is also easily extended
to include a test for sufficient number of examples supporting a hypothesis, for
example, in lines of [TT].

Theorem 2. Algorithm 2 constructs the Hasse diagram of a concept lattice in
O((a|G| + BIG|P)|L]) time and O((v|G||L|) space, where |L| is the number of
concepts, « is the time needed to perform I operation, 3 is the time needed to
test T relation, and 7y is the space needed to store the largest object from Qév,

When contexts and concepts are given by Definition 1 the diagram is constructed
in O(|M||G?|L|) time and O(|M||G||L|) space.

5 Conclusion

We presented a learning model in a version of the formal concept analysis that
allows processing graph structures. For example, this model can be used for
learning implications on simple conceptual graphs [I3] or molecular graphs. The
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model can also be extended to arbitrary data structures with partial order.
Algorithmic analysis was provided. Though computations on graphs may be
hard in general, this does not affect the linear dependence of time and space
needed for the computation on the number of resulting concepts (hypotheses,
implications).

6

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, project
no. 98-06-80191 and the Alexander von Humboldt Foundation.

References

10.

11.

12.

13.

14.

. Carpineto, C., Romano, G.: A Lattice Conceptual Clustering System and Its Ap-

plication to Browsing Retrieval. Machine Learning 24 (1996) 95-122

Finn, V.K.: On Machine-Oriented Formalization of Plausible Reasoning in the
Style of F. Backon—J. S. Mill. Semiotika Informatika 20 (1983) 35-101 [in Russian]
Finn, V.K.: Plausible Reasoning in Systems of JSM Type. Itogi Nauki ¢ Tekhniksi,
ser. Informatika 15 (1991) 54-101

Ganter, B: Algorithmen zur Formalen Begriffsanalyse. In: Ganter, B., Wille, R.,
and Wolff, K. E. (eds.): Beitrage zur Begriffsanalyse. B. 1. Wissenschaftsverlag,
Mannheim (1987) 241-254

Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations.
Springer-Verlag, Berlin Heidelberg New York (1999)

Godin, R., Missaoui, R., Alaoui, H.: Incremental Concept Formation Algorithms
Based on Galois (Concept) Lattices. Computational Intelligence 11(2) (1995) 246-
267

Guénoche, A.: Construction du treillis de Galois d’une relation binaire. Math. Sci.
Hum. 95 (1990) 5-18

Kuznetsov, S.O.: Interpretation on Graphs and Algorithmic Complexity Charac-
teristics of a Search of Specific Patterns. Autom. Document. Math. Ling. 23(1)
(1989) 37-45

Kuznetsov, S.0.: JSM-method as a Machine Learning System. Itogi Nauki Tekhn.,
ser. Informat. 15 (1991) 17-54 [in Russian]

Mugnier, M.L.: On Generalization/Specialization for Conceptual Graphs. J. Ezp.
Theor. Artif. Intel. 7 (1995) 325-344

Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Pruning Closed Itemset Lattices
for Association Rules. In: Proc. 14th BDA Conference on Advanced Databases
(BDA’98). Hamammet (1998) 177-196

Skorsky, M.: Endliche Verbande - Diagramme und Eigenschaften. Shaker, Aachen
(1992)

Sowa, J.F.: Conceptual Structures - Information Processing in Mind and Machine.
Addison-Wesley, Reading (1984)

Wille, R.: Restructuring Lattice Theory: an Approach Based on Hierarchies of
Concepts. In: Rival, I. (ed.): Ordered Sets. Reidel, Dordrecht Boston (1982) 445-
470



	Introduction
	Learning from Examples in Formal Concept Analysis
	Extension of the Learning Model
	Algorithms and Complexity
	Conclusion
	Acknowledgments



