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Abstract Pattern structures consist of objects with descriptions (called
patterns) that allow a semilattice operation on them. Pattern structures
arise naturally from ordered data, e.g., from labeled graphs ordered by
graph morphisms. It is shown that pattern structures can be reduced
to formal contexts, however sometimes processing the former is often
more efficient and obvious than processing the latter. Concepts, implica-
tions, plausible hypotheses, and classifications are defined for data given
by pattern structures. Since computation in pattern structures may be
intractable, approximations of patterns by means of projections are in-
troduced. It is shown how concepts, implications, hypotheses, and clas-
sifications in projected pattern structures are related to those in original
one.

Introduction

Our investigation is motivated by a basic problem in pharmaceutical research.
Suppose we are interested which chemical substances cause a certain effect, and
which do not. A simple assumption would be that the effect is triggered by the
presence of certain molecular substructures, and that the non-occurence of the
effect may also depend on such substructures.

Suppose we have a number of observed cases, some in which the effect does
occur and some where it does not; we then would like to form hypotheses on
which substructures are responsible for the observed results. This seems to be a
simple task, but if we allow for combinations of substructures, then this requires
an effective strategy.

Molecular graphs are only one example where such an approach is natural.
Another, perhaps even more promising domain is that of Conceptual Graphs
(CGs) in the sense of Sowa [21] and hence, of logical formulas. CGs can be used
to represent knowledge in a form that is close to language. It is therefore of
interest to study, how hypotheses can be derived from Conceptual Graphs.

A strategy of hypothesis formation has been developed under the name of
JSM-method by V. Finn [8] and his co-workers. Recently, the present authors
have demonstrated [11] that the approach can neatly be formulated in the lan-
guage of another method of data analysis: Formal Concept Analysis (FCA) [12].



The theoretical framework provided by FCA does not always suggest the
most efficient implementation right away, and there are situations where one
would choose other data representation forms. In this paper we show that this
can be done in full compliance with FCA theory.

1 Formal Contexts

From every binary relation, a complete lattice can be constructed, using a simple
and useful construction. This has been observed by Birkhoff [3] in the 1930s, and
is the basis of Formal Concept Analysis, with many applications to data analysis.

The construction can be described as follows: Start with an arbitrary relation
between two sets G and M, i.e., let I C G x M, and define

A':={me M| (g,m)elforal ge A} for ACQG,

B':={g€ G| (g9,m) €I for all m € B} for B C M.
Then the pairs (A, B) satisfying

ACG,BCMA'=B,A="D

are called the formal concepts of the formal context (G, M, I). When ordered
by
(141,_31)S(x‘lg,.Bz):‘(:)> Aq gAQ (<:> By gBl),

they form a complete lattice, called the concept lattice of (G, M, I).

The name “Formal Concept” reflects the standard interpretation, where the
elements of G are viewed as “objects”, those of M as “attributes”, and where
(g,m) € I encodes that object g has attribute m. It has been demonstrated that
the concept lattice indeed gives useful insight in the conceptual structure of such
data (see [12] and references there).

That data are given in form of a formal context is a particularly simple case.
If other kind of data is to be treated, the usual approach is first to bring it in this
standard form by a process called “scaling”. Recently, another suggestion was
discussed by several authors [14], [15] [16] [17]: to generalize the abovementioned
lattice construction to contexts with an additional order structure on G and/or
M. This seems quite natural, since the mappings A — A’, B — B’ used in the
construction above form a Galois connection between the power sets of G and
M. It is well known that a complete lattice can be derived more generally from
any Galois connection between two complete lattices.

On the other hand, one may argue that there is no need for such a gen-
eralization and that no proper generalization will be achieved, since the basic
construction already is as general as possible: it can be shown that every com-
plete lattice is isomorphic to some concept lattice.

Nevertheless, such a more general approach may be worthwhile for reasons
of efficiency, and it seems natural as well. Several authors [2], [4], [7] have con-
sidered the case where instead of having attributes the objects satisfy certain



logical formulas. In such a situation, shared attributes are replaced by common
subsumers of the respective formulae.

We show how such an approach is linked to the general FCA framework. We
discuss some operational and algorithmic aspects and demonstrate our results
on an example.

2 Pattern structures

Let G be some set, let (D,MN) be a meet-semilattice and let § : G — D be
a mapping. Then (G,D,§) with D = (D,N) is called a pattern structure,
provided that the set

6(G) :=={d(g) | g € G}

generates a complete subsemilattice (Ds, M) of (D, ).} Each such complete semi-
lattice has lower and upper bounds, which we denote by 0 and 1, respectively.
The intuitive meaning of a pattern structure is the set of objects with “descrip-
tions” (patterns) with a “similarity operation” M on them, i.e., an operation that
for an arbitrary set of objects gives a “description” that represents the similar-
ity of the objects from the subset. The similarity should be independent of the
order in which the objects occur, therefore the operation should be idempotent,
commutative, and associative.

The condition on the complete subsemilattice looks unpleasant. But note
that there are two situations where this is automatically satisfied: when (D, )
is complete, and when G is finite.

If (G, D, 0) is a pattern structure, we define the derivation operators as

o._
A- = gDA 4(g) for ACG

and
d2:={geG|dC )} for d € D.

The elements of D are called patterns. The order on them is given, as usual,
by
cCd: <= cNd=c,

and is called the subsumption order. The operators (-)~ obviously make a
Galois connection between the power set of G and (D,C). The pairs (A4,d)
satisfying

ACG, deD, A9 =d, and A=d"

are called the pattern concepts of (G,D,§), with extent A and pattern in-
tent d. The above notions are analogues of the corresponding notions in formal
contexts. For a,b € D the pattern implication a — b holds if a™ C b". A pat-
tern implication says what patterns occur in an object “description” if a certain
pattern does. Similarly, for C, D C G the object implication C — D holds if

! By which we mean that every subset X of §(G) has an infimum MX in (D,MN) and
that Djs is the set of these infima.



CH C DU, Informally, this implication says that “all patterns that occur in all
objects from the set C' occur also in all objects from the set D.”

Since (Ds,M) is complete, there is a (unique) operation U such that (Ds, 1, L)
is a complete lattice. It is given by

|_|X=|_|{C€D5 | Veex x C c}.

A subset M of D is Li-dense for (Dg, M) if every element of Dj is of the form
UX for some X C M. If this is the case, then with

ld:={eeD|eCd}

we get
c=U({len M) for every ¢ € Dj.

Of course, M := Dy is always an example of a M-dense set.
If M is U-dense in (Dg,M), the formal context (G, M,I) with I given as
gIm: <& m C §(g) is called a representation context for (G, D, 9).

Theorem 1. Let (G,D, ) be a pattern structure and let (G, M,I) be a repre-
sentation context of (G,D,d). Then for any A C G, B C M and d € D the
following two conditions are equivalent

1. (A,d) is a pattern concept of (G,D,d) and B=LdN M.
2. (A, B) is a formal concept of (G,M,I) and d =|]|B.

The proof is by a standard application of the basic theorem of Formal Concept
Analysis [12].

Thus the pattern concepts of (G,D,d) are in 1-1-correspondence with the
formal concepts of (G, M, I). Corresponding concepts have the same first com-
ponents (called extents). These extents form a closure system on G and thus a
complete lattice, which is isomorphic to the concept lattice of (G, M, I).

3 Computing pattern concepts

When a pattern structure is given, then in principle we have all the information
necessary to determine its concepts. We might, for example, compute all infima
of subsets of Ds and thereby all pattern concepts. To this end we can, e.g.,
adapt the Next Concept algorithm [12]. In computation of even finite pattern
structures, one should take into account the fact that performing a single closure
may be intractable. For example, already the problem of testing the C relation
for labeled graphs from Section 7 is NP-complete, and computing X MY is even
more difficult. Thus, in designing an algorithm for computing pattern concepts,
one needs first to minimize the number of operations MM, then the number of
C relation tests, and, in the last turn, the number of operations with Boolean
vectors.

After each backtrack of the original version of the Next Concept algorithm,
it performs intersection of |G| object intents. To avoid this in case of “expensive”



M operation, one can introduce a natural tree data structure. Each vertex of the
tree corresponds to a concept (A, B) and the children of the tree correspond to
concepts of the form ((A U {g})", (A U {g})") (actually, only some concepts of
this form). An algorithm of this kind was given in [9].

A similar algorithm of this type was described in [16] for computing with sets
of graphs. Given a family F of graph sets and an idempotent, commutative and
associative operation M on them defined as in Section 7, the algorithm constructs
the set of “all possible intersections” of sets from F, i.e., the semilattice gener-
ated by sets from F, and its line (Hasse) diagram. The time complexity of the
algorithm is O((a+ B|G|)|G||L|) and its space complexity is O((|G||L|)), where
« is time needed to perform M operation and B is time needed to test C relation
and -~y is the space needed to store the largest object from Ds. Computing the
line diagram of the set of all concepts, given the tree generated by the previous
algorithm, takes O((«|G| + B|G|?)|L|) time and O((v|G||L|) space [16].

A similar approach to computing pattern concepts and implications between
objects can be made in lines of a procedure proposed in [2]. This procedure, called
the object exploration, is the dual of the attribute exploration algorithm,
which is standard in Formal Concept Analysis. For a given closure operator on
G it computes its stem base; which is an irredundant system of implications
on G that generate the closure operator. Here an implication

A—- B, ABCG

holds, like in case of implications between sets of attributes, if B C A”. The order
studied in [2] is given by the hierarchy of descriptions in Description Logic, where
the description that is an infimum of two other descriptions (their least common
subsumer) can be of exponential size, e.g., for ALE logic [2].

In the beginning of the exploration process one has the empty set of object
implications and the set of extents E, consisting at the initialization step of the
empty extent. One considers the set of implications of the form A — A" for
A € FE in the lexicographical order and asks an expert whether each particular
implication holds. If the expert says yes, then either the set of implications or
the set of extents are updated (dependent on the fact whether a set of objects
is pseudoclosed or closed), if not, the expert should provide a counterexample
that updates the current set of objects.

As in case of formal contexts [12], A — B is defined for pattern structures
as BY C AV, which is equivalent to [ 16(4) = 1§(A U B).

As the result of object exploration one obtains the context with the same
concept lattice as the lattice of description hierarchy (i.e., the lattice of least
common subsumers) and the stem base of object implications.

The procedure proposed in [2] also applies to the general setting with an
arbitrary semilattice D.

Its worst-case complexity sums up from two parts. The first one is related to
computing pseudoclosed (for definition see [12], no good estimate of the number
of pseudoclosed of a given context is known so far). The second term of the
complexity estimate (due to tests whether pseudoclosed sets are closed, i.e., in



case of object exploration, that they are extents) is similar to the upper bound
from [16] given above.

4 Structured Attribute Sets

We have introduced pattern structures to replace sets of attributes by a sort of
“descriptions”. However, this does not exclude the possibility that the patterns
are themselves attribute combinations. A natural situation where this occurs
is when the attribute set is large, but structured, so that admissible attribute
combinations can be described by generating subsets.

Consider the example mentioned in the introduction: there the observed pat-
terns are chemical compounds, described by their molecular graphs. There is
no natural M-operation for such graphs, except when we use a little trick: we
replace each graph by the set of its subgraphs, including the graph itself. Then
the meet is the set of all common substructures. When describing such sets, one
will usually restrict to the mazimal common substructures and tacitly include
the sub-substructures of these. This can considerably reduce the computational
effort, see the examples in Section 7.

To phrase this situation more abstractly, assume that the attribute set (P, <)
is finite and (partially) ordered, and that all attribute combinations that can
occur must be order ideals (downsets) of this order. Any order ideal O can be
described by the set of its maximal elements M as O:= {z | Iy € Mz < y}.
The maximal elements form an antichain, and conversely each antichain is the
set of maximal elements of some order ideal. Thus, in this case, the semilattice
(D, ) of patterns will consist of all antichains of the ordered attribute set, and
will be isomorphic to the lattice of all order ideals of the ordered set (and thus
isomorphic to the concept lattice of the context (P, P, %), see [12]). For given
antichains C; and Cs, the infimum C} M5 then consists of all maximal elements
of the order ideal

{m | e,ec,Fencc, m < e and m < ea}.

Computing C; M Cy may however be a problem. Note, e.g., that in the intro-
ductory example of chemical compounds, even the <-relation is difficult to com-
pute, since x < y amounts to z is isomorphic to a subgraph of y, which is an
NP-complete problem [13].

There is a canonical representation context for this pattern structure (G, D, 9).
It is easy to see that the set of principal ideals | p is M-dense in the lattice of all
order ideals. Thus

(G,P,I) with (g,p) € I : <= p < d(g)

is (isomorphic to) a representation context for (G, D, 6).

Since the set of order ideals is closed under unions, the semilattice D of
antichains will be a distributive one. The same approach also works in the meet-
distributive case, for sets selected from a closure system with the anti-exchange



property [12]. The anti-exchange property implies that each closed set is the
closure of its extreme points, as it is known for the example of convex polyhedra.
Again we get that each closed set has a canonical generating set, that may be
used as a pattern.

5 Projections

It may happen that some of the patterns in a pattern structure are too com-
plex and difficult to handle. In such a situation one is tempted to replace the
patterns with weaker, perhaps simpler ones, even if that results in some loss of
information.
We formalize this using a mapping ¢: D — D and replacing each pattern d €
D by 1(d) such that the pattern structure (G, D, d) is replaced by (G, D, 04d)?.
It is natural to require that ¢ is a kernel operator (or projection), i.e., that
P is
monotone: if  C y, then ¢(z) C ¢(y),
contractive: ¢ (z) C z (or ¢ < id, where id denotes the identity mapping), and
idempotent: (¢ (z)) = ().

In what follows we will use the following fact, well-known in order theory [6]:

Proposition 1. Any projection of a complete semilattice (D, M) is M-preserving,
i.e., for any X, Y € D

PX NY) = (X)) N(Y).

It is easy to describe how the lattice of pattern concepts changes when we
replace (G, D, ) by (G,D, o §). First, the folowing statement establishes the
invariance of subsumption relation for projected data

Proposition 2. ¢(d) C §(g9) < ¢¥(d) C 9 0 d(g).

Proof. If ¢(d) C 6(g) then ¥(d) = ¥ (¥(d)) C ¥(6(g)) by the idempotence of 1.
On the other hand, if ¢(d) C ¢ o §(g) then ¢(d) C 6(g), since ¢ is contractive.

The following statement establishes the relation between projected pattern
structures and their representation contexts: taking a projection is equivalent to
taking a subset of attributes of the representation context of the original pattern
structure.

Theorem 2. For pattern structures (G, D, 61) and (G, D, 62) the following state-
ments are equivalent:

1. 63 =1 o b1 for some projection b of D.

% In this situation we consider two pattern structures simultaneously. When we use
the symbol U, it always refers to (G, D, d), not to (G, D, o §).



2. There is a representation context (G,M,I) of (G,D,61) and some N C M
such that (G, N,IN (G x N)) is a representation context of (G,D,d2).

Proof. 1 = 2. Let 61,d5: G — D be mappings and let 1: D — D be a projection
of D such that d2 = 1) 0 4.

Define M:= D and N:= {¢)(m) | m € M} C M. Clearly (G, M,I) with
(g,m) € I & m C 6;(g), is a representation context of (G,D,d1). Moreover,
(G, N, J) with (g,n) € J: & n C §2(g) is a representation context of (G, D, d5).
It remains to prove that J = I' N (G x N), i.e., that the equation n C §;(g9) <
n C do(g) holds for arbitrary g € G,n € N. Note that for each n € N we have
¥(n) =n (since ¢¥(n) is idempotent). Thus, the equation follows from 2.

1 < 2. Having N C M we define

Y(d):={ne N |nLCd}

This mapping is obviously contractive, monotone, and idempotent. By definition
of ¥, we have n C d <& n C ¢(d) for all n € N and all d € D. Therefore,

Yodi(g)=U{n €N |nCd(g9)}=U{neN|[nCP(i(g)} = d(g)-

Corollary 1. Every extent of (G,D,v o d) is an extent of (G,D,9). If d is a
pattern intent of (G,D,4), then ¢¥(d) is a pattern intent of (G,D,v o), for
which ¢(d)™™ C d.

Pattern structures are naturally ordered by projections: (G, D, 61) > (G, D, d3)
if there is a projection 9 such that d2 = % o d;. In this case, representation
(G, D, d2) can be said to be rougher than (G,D,d;) and the latter to be finer
than the former.

The following proposition relates implications in comparable pattern struc-
tures.

Proposition 3. Let a,b € D. If ¢(a) — ¥(b) and 1)(b) = b then a — b.

Proof. By contractivity of projection we have 1(a) C a, hence a” C (¢(a))"
and a — 9¥(a). If ¥(a) = ¥(b) = b, then a — b follows from the transitivity of
the relation —.

Thus, for a certain class of implications, it is sufficient to compute them
in projected data (which can be far more efficient than to compute in original
pattern structure) to establish their validity for the original pattern structure.
Note that this proposition does not require a and b to be subsumed by patterns
from §(G). In the case where a C §(g) for no g € G, we have a” = (§ by definition
and all implications in Proposition 3 hold automatically.

Some examples considered in the last section demonstrate that the inverse of
the proposition, as well as the generalization of it when (B) # B, do not hold.



6 Hypothesis Generation from Projected Data

In [11] we considered a learning model from [8] in terms of Formal Concept
Analysis. This model assumes that the cause of a goal property resides in
common attributes of objects that have this property. If our objects are described
by some mathematical structures, we may look for common substructures of
those objects that have the goal property.

This can be transferred to pattern structures, where it is assumed that the
presence and absence of the goal property can be predicted from the patterns as-
sociated with the objects. The setting can be formalized as follows. Let (G, D, d)
be a pattern structure together with an external goal property w. The set G of
all objects can be partitioned into three disjoint sets: The set G of those objects
that are known to have the property w (these are the positive examples), the set
G _ of those objects of which it is known that they do not have w (the negative
examples) and the set G, of undetermined examples, i.e., of those objects, of
which it is unknown if they do have property w or not. This gives three pattern
substructures of (G, D, d): (G+,D,d), (G-, D,d), (G,,D,d).

A positive hypothesis h is defined as a pattern intent of (G4, D,¢) that
is not subsumed by any pattern from §(G_) (for short: not subsumed by any
negative example). Formally:

h € D is a positive hypothesis iff RPNG_=0and 34 C Gy : A9 = h.

A negative hypothesis is defined accordingly. These definitions implement
the general idea of machine learning in terms of formal concept analysis: “given
positive and negative examples of a goal class, find generalizations (generalized
descriptions) of positive examples that do not cover any negative examples.”

A hypothesis in the sense of [11] is obtained as a special case of this definition
when (D, M) = (2M,N) for some set M. Hypotheses can be used for classification
of undetermined examples as introduced in [8] in the following way. If g € G-
is an undetermined example, then a hypothesis h with h C §(g) is for the
positive classification of g if h is positive and for the negative classification
of g if it is a negative hypothesis. Example g € G, is classified positively
if there is a hypothesis for its positive classification and none for its negative
classification. It is classified negatively in the converse situation. We have no
classification if there is no hypothesis for positive and negative classification or
contradictory classification (if there are hypotheses for both positive and negative
classification).

Hypotheses have been studied in detail elsewhere [11]. Here we focus our
consideration on the following aspect. What happens when we use “weaker”
data, approximating the original data? What is the significance of hypotheses
obtained from weak data?

On the one hand, we almost always deal with weak data that describe reality
approximately. For example, in case of molecular structures, a more adequate
representation can be the 3D—geometrical one. But even this geometrical repre-
sentation of a molecule is already an abstraction of a quantum-mechanical one,



etc. On the other hand, having some data for which computation is intractable,
we would like to have their tractable reasonable approximation that would allow
one to judge about hypotheses and classifications in the original representation
by means of results about hypotheses and classification for weak data.

This problem becomes more precise if we describe the data weakening by
means of a projection ¥: D — D. Instead of (G,D,d) we than work with
(G7 Q: ¢ o 6) and its three pa‘rts (G+7 Qa w o 6)7 (G* ’ Q: ¢ o 6)7 and (GT7Q7 ¢ o 6)7
as above.

To simplify our language, let us reserve the term “hypothesis” to those ob-
tained from (G, D,d) and let us refer to those obtained from (G, D, o §) as
1)-hypotheses. Now the question to be studied is: How are hypotheses and -
hypotheses related? In what follows we shall try to answer this question for pos-
itive hypotheses. Results similar to that below hold also for negative hypotheses
and classifications.

There is no guarantee that the ¥-image of a hypothesis must be a ¥-hypothesis.
In fact, our definition allows that % is the ,null projection® with ¥(d) = 0 for
all d € D. This corresponds to total abandoning of the data, and no interesting
hypotheses are to be expected in that situation.

However, we have the following

Proposition 4. Ify(d) is a (positive) hypothesis, then 1(d) is also a (positive)
Y-hypothesis.

Proof. If 1(d) is a positive hypothesis, then 1 (d) is not subsumed by any neg-
ative example. Moreover, ¢(d) is a pattern intent of (G, D, o §) according to
Corollary 1. Thus ¥(d) is a ¥-hypothesis.

The classification set does not shrink when we pass from d to ¥(d):

Proposition 5. If d is a hypothesis for the positive classification of g and (d)
is a positive Y-hypothesis, then ¥(d) is for the positive classification of g.

Proof. is obvious, since 9(d) C d C g".

Proposition 6. If(d) is a (positive) 1-hypothesis, then 1)(d)7 is a (positive)
hypothesis.

Proof. Assume that ¢(d) is a positive 1-hypothesis. Then the corresponding
extent in (G, D, o d),

E:={geG|y(d) Cy((9)},
)

is contained in G4 and is also an extent of (G, D,d) (by the corollary of Theo-
rem 2). Thus ¢(d)P" = E is an intent of (G4, D,§) and cannot subsume any
negative example, since it is subsumed by ¥ (d).

The propositions show that we may hunt hypotheses starting from -hypotheses.
We can shoot only those that can be seen in the projected data, but those can
in fact be found, as the following theorem states:



Theorem 3. For any projection ¥ and any positive hypothesis d € D the fol-
lowing are equivalent:

1. (d) is not subsumed by any negative example.
2. There is some positive Y-hypothesis h such that hB5 C d.

Proof. If 1(d) is not subsumed by any negative example, then h := 9(d) is a
-hypothesis and AP C d by Corollary 1. If k is a ¢-hypothesis, then hHY is a
hypothesis by Proposition 6 and hence d, which subsumes A", is not subsumed
by any negative example.

7 An Application to Graphs

As an application we shall consider a situation where the patterns are given as
labelled graphs. These may be structure graphs of chemical compounds, as men-
tioned in the introduction, and the task may be to find the patterns responsible
for a pharmaceutical effect under investigation. It is natural to assume (and it is
the common assumption in this applied domain) that common biological effect
of chemical compounds is caused by their common substructures. The graphs
could as well be conceptual graphs in the sense of Sowa [21]. Let P be the set of
all graphs under consideration, and let this set be ordered by generalized sub-
graph isomorphism (a definition is given below). As above, we have a set G (of
experiments, observations, or the like) and to each g € G there is an associated
graph from P, denoted by 4(g).

To be more concrete, let (£ <) be some ordered set of “labels”. In the
examples below, this set will be the one displayed in Figure 1.

oN oCl oP oC

VA4

O%

Figure 1. The ordered set of labels for the molecular graphs in our example. z stands
for ,any element“.

Let P be the set of all finite graphs, vertex-labelled by labels from (£, <),
up to isomorphism. A typical such graph is of the form I' := ((V,!), E), with
vertex set V, edge set E and label assignment [. We say that It := ((V4,11), E1)
dominates I := ((Va,12), E»), for short I, < I, if there exists a one-to-one
mapping ¢ : Vo — V4 that (for all v,w € V%)

— respects edges: (v,w) € E2 = (¢(v),p(w)) € Ey,
— fits under labels: I2(v) < I1(p(v)).



Obviously this is an order relation. It may be called the “generalized sub-
graph isomorphism relation”, since in the unlabelled case it reduces to the sub-
graph isomorphism order. For conceptual graphs it corresponds to the injective
specialization relation [19] or injective morphism [18].

Example 1. Let I't and I'; be molecular graphs given in Figure 2. They represent

Cl

AN c

C
Cl

It: I

N N

Figure 2. Two molecular graphs representing patterns.

patterns in the described sense. Their meet, with a slight misuse of notation
written as I3 M1y, is given by the set of three graphs depicted in Figure 3. Here,

Cl. c C C
/C’l / Cl
HI: HQ: H32
C c z z z z
N z c

Figure 3. I'1 M I given by the maximal graphs in the intersection of the downsets
generated by It and I.

the disconnected graph H; contains more information about the cyclic structure,
whereas Hy and Hj contain more information about the connection of the cycle
with the vertex labeled by “CI”.

Example 2. Tt is clear from the previous example that computing hypotheses
for this pattern structure may be very tedious, since it may require to decide



about subgraph isomorphism many times. It is therefore advisable to restrict
the considerations to a subclass of the graphs, for which this is easier. This can
neatly be described using the notion of a projection: let ) C P be the set of the
“simple” graphs in P, then

(G,Q,IN(G xQ))

represents, according to Theorem 2, some pattern structure (G, D,106) obtained
from a projection ¢ : D — D.

A natural choice for @ is the class of all paths of a bounded length n. This
projection is important for pharmaceutical applications, since biological activ-
ities of chemical compounds often reside in linear fragments of their molecular
structures. By Theorem 2, this describes a projection 1),,. The images of I and
I5 under 3, represented by sets of 3-paths maximal w.r.t. C, are shown in
Figure 4.

a_c ¢
ca ¢ N c N C
c c c c c c
Ys(1): o c N Ya(l2): o C N
¢c N ¢ ¢c N C
N cC N N C N

Figure 4. The sets representing the projected graphs s3(I1) and 13(I%).

The number of chains of fixed length contained in a molecular graph is poly-
nomial in the size of the graph. Therefore, the computation of the meet operation
drastically reduces in complexity. The maximal (w.r.t. C) chains representing
3(I'7) M3 (I) (which is, by Proposition 1, equal to 3 (I M1I3)), are shown in
Figure 5.

Ezample 3. We conclude with counterexamples for the inverse of Proposition 6
and its generalization for ¢(B) # B. Let ¢ be 12, which takes each graph in
the set of all edges (which are not dominated by other edges). Then for A, A,
By, Bs, Bs given in Fig. 6 and the pattern structure ({g1,92}, (£2,M),{d(g1) =
Bi1,6(g2) = Bs}) we have the implication ts(A;) — 12(Bs) (since hy(A;) =



Cl T C

C C C
C C N
C N C
N C N

Figure 5. ¢3(F1) [l 1[)3(F2).

{91,92} = ¥»(Bs3)"), but not the implication A; — Bs (since (4;)Y = {91,92} &
0 = (Bs)); we have the implication Ay — By (since (42)Y = {g2} = (B1)P),
but not _the implication ¢3(A3) — 42(By) (since 3(A2)™ = {g1,92} Z {92} =
2 (By)").

All N C

AQZ N C Cl

Bi: N C Cl P

BQI N C C Cl

Bs: (i C Cl

Figure 6. Graphs for Example 3.

8 Conclusion

We considered analogues to formal contexts, but with a (semi)lattice of patterns
instead of attributes. Such structures can easily be mapped to formal contexts,
and it can be described how hypothesis generation from such pattern structures



is to be organized. This becomes more intricated when we allow data weakening.
We have described methods to recover those hypotheses that are reflected in
the weaker data. The notion of a pattern can be applied to ordered attribute
sets. Then the pattern lattice is the lattice of order ideals of the attribute order.
Weakening corresponds to a restriction of the attribute set.
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